

Yasemin Ertaş Öztürk*, Rukiye Bozbulut, Esra Döger, Aysun Bideci and Eda Köksal

The relationship between diet quality and insulin resistance in obese children: adaptation of the Healthy Lifestyle-Diet Index in Turkey

<https://doi.org/10.1515/jpem-2017-0271>

Received July 31, 2017; accepted January 29, 2018; previously published online March 1, 2018

Abstract

Background: Childhood obesity and its complications are serious health problems and diet/lifestyle changes can be beneficial for the prevention of diseases. Adaptation of the Healthy Lifestyle-Diet (HLD) Index in accordance with the dietary guidelines for Turkey (TR) and determination of the relationship between metabolic syndrome risk factors in obese children were the aims of this study.

Methods: This study was conducted on 164 overweight or obese children (87 male, 77 female) aged 9–13 years. For all participants, the HLD-TR Index and a 24-h dietary recall were performed and the mean adequacy ratio (MAR) was calculated. Anthropometric measurements and the body composition of the children were taken. Metabolic syndrome risk factors and insulin resistance were assessed.

Results: The mean age of the male and female children was 11.2 ± 1.49 and 11.0 ± 1.40 years, respectively. The majority of the children were obese in both genders. There were no statistically significant differences in the HLD-TR scores between the genders. As the index scores increased, a decrease in the energy intake and an increase in the MAR were observed. Negative correlations between the index scores and body mass, waist circumference and body fat mass were observed. Furthermore, a one-unit increase in the index score decreases the insulin resistance risk by 0.91 times after adjustments for age and gender (odds ratio: 0.91 [0.85–0.97]).

Conclusions: The HLD-TR Index is a valid tool that can give an idea about the quality of the diet in obese children.

Furthermore, with the increase in the compliance with recommendations for diet/lifestyle changes, indicators of obesity and metabolic syndrome were decreased.

Keywords: children; diet quality; insulin resistance; nutrition; obesity.

Introduction

Obesity is a clinical problem that requires prevention and treatment in all age groups [1, 2]. The prevalence of childhood obesity has reached epidemic levels in both developed and developing countries and childhood obesity has become one of the most important health problems of the 21st century in terms of its harmful effects on children, their families and society [3]. Overweight and obesity in childhood have a significant impact on both physical and psychological health [4]. Children with obesity have greater cardiometabolic risk factors (hyperlipidemia, hypertension, insulin resistance). Furthermore, the majority of these children isolate themselves from society and remain obese in adulthood [5].

Various studies have underlined some of the lifestyle patterns and eating habits that increase the risk of childhood obesity [5, 6]. Lifestyle changes in recent years have led to increased sedentary behavior, the consumption of more energy-dense foods and a decrease in the time spent on physical activity [7]. A lifestyle intervention that comprises a combination of diet, exercise and/or behavioral changes is seen as a basic element in the management of obesity [8].

Children develop their eating behaviors and food preferences while growing and they also maintain these habits in their youth and adulthood [9]. Detecting children who have adopted an unhealthy lifestyle and poor eating habits and beating the risk of being overweight/obese is critically important for public health [10, 11].

In studies regarding a healthy diet and lifestyle in children, the impact of specific foods, food groups and/or nutrients and some parameters of physical activity/a sedentary behavior on health status was analyzed [12–15]. However, the results of these studies do not reflect the

*Corresponding author: Yasemin Ertaş Öztürk, MSc, Res. Assist., Gazi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey, Phone: +903122165017, Fax: +903122162636, E-mail: yasemnertas@hotmail.com. <http://orcid.org/0000-0002-8232-103X>

Rukiye Bozbulut, Esra Döger and Aysun Bideci: Gazi University, Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey

Eda Köksal: Gazi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey

cumulative effect of the overall diet and lifestyle quality. Because the dietary habits of individuals are associated with the lifestyle model it makes it difficult to assess the quality of the diet-lifestyle [16].

Several factors are responsible for the etiology of obesity. In this context, the Healthy Lifestyle-Diet Index (HLD Index), which includes both dietary patterns and lifestyle, has emerged as an alternative approach. With this index, the diet-lifestyle quality of children was assessed based on the United States Department of Agriculture (USDA) dietary guidelines and a negative correlation was found between insulin resistance and the index scores [11].

The aim of this study is to adapt the HLD Index in accordance with the dietary guidelines for Turkey and determine the relationship between metabolic syndrome parameters in obese children.

Materials and methods

This study was conducted on 164 overweight or obese volunteer children (87 male, 77 female) aged 9–13 years who were admitted to Gazi University, Faculty of Medicine, Department of Pediatric Endocrinology, in Ankara, between June and October 2015. Children who applied to the polyclinic to get healthy nutrition recommendations from a dietitian were invited to join the study. Exclusion criteria were not having any chronic diseases (diabetes mellitus, cardiovascular diseases, polycystic ovary syndrome, thyroid dysfunction, asthma, etc.), were of normal weight and not receiving hormone therapy and not taking medications. Ethical approval for the study was obtained from the Ethics Committee of Gazi University.

Data were collected using a questionnaire prepared by researchers. Children and their parents were asked about the demographic characteristics (age, education level, occupational status), the HLD Index and a 24-h dietary recall. Anthropometric measurements (body weight, height and waist circumference) and the body composition of the children were assessed.

Anthropometric measurements and body composition

The body weight (kg), height (cm) and waist circumference of the children were measured using standard measurement protocols [17]. Height was measured with a stadiometer while the children were in a Frankfort plane. Waist circumference was measured at the midpoint, above the iliac crest and below the lowest rib margin at minimum respiration, using a flexible tape to the nearest 0.1 cm. The body weight and body fat percentage (%) of the children were obtained using a bioelectrical impedance analyzer (TBF-300, Tanita Corporation, Tokyo, Japan). All the participants underwent body composition analysis following at least a 4-h fasting by not consuming any fluid (water, tea, coffee), not doing heavy physical activity and not having any metal objects in contact with their skin. Z-scores for body mass index (BMI) for age were calculated from the World Health Organization (WHO) growth reference data for children aged 5–19 years with the AnthroPlus program (WHO, Geneva, Switzerland). The children

were grouped as overweight and obese, in accordance with the cut-off points of $\geq+1$ standard deviation (SD)–2 SD and $\geq+2$ SD Z-scores, respectively [18].

Biochemical parameters and blood pressure

The fasting blood glucose, insulin, total cholesterol, low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C) and triglyceride levels of the children, which are routinely analyzed at the Gazi University, Faculty of Medicine, Department of Pediatric Endocrinology, were recorded. Blood pressure measurement in children were taken by the researchers in accordance with the standard measurement protocol, in a position which children seated comfortably. The arm was supported at the heart level and the first and last audible sounds were taken as systolic and diastolic pressures to the nearest 2 mmHg [19].

Assessment of insulin resistance

In order to evaluate insulin resistance, the homeostasis model assessment for insulin resistance (HOMA-IR) value was calculated by using the fasting blood glucose (mmol/L) \times fasting insulin (μ U/mL)/22.5 formula [20]. A value greater than 3.16 was accepted as the cut-off value determined for children and adolescents as per Keskin et al. [21].

Food consumption records

The food consumption of the children was examined through face-to-face interviews by a dietitian via the 24-h dietary recall method, accessed through the children and their parents. The dietary energy and nutrient intakes of the children (see Supplementary Material Table 1) were calculated using a food database program which was described as the nutrition information system (in Turkish: Beslenme Bilgi Sistemi – BeBiS 7). This database contains Turkish food composition tables for all foods [22]. The nutrient adequacy ratios (NARs) of the children were calculated using dietary reference intake (DRI) recommendations (%) for selected nutrients (vitamin A, vitamin C, riboflavin, vitamin B₆, folate, vitamin B₁₂, calcium, iron, magnesium, zinc, potassium and sodium) [23]. The mean adequacy ratio (MAR) was obtained by dividing the NARs into the number of nutrients.

Diet quality index

The HLD Index (originally contained 10 components) developed by Manios et al. [11] was adapted to Turkish culture and used for determining the quality of the children's diet. As the dietary recommendations in the original HLD Index were similar to the Turkish Nutrition Guideline 2015 for children [24], the servings did not change. However, certain food categories were examined in more detail; for example, cereals were separated into bread, cornflakes and rice/pasta; dairy products into milk, yogurt and cheese; and meats into red meat, poultry and processed meats. Furthermore, as meat product consumption preferences can vary according to the fat content in

Turkey [25–27], the degree of fat content was examined as whole fat, medium fat and lean separately. Consumers may prefer not to buy visible fats or buy different types of meat whose fat contents can vary (veal, beef, mutton, goat meat, etc.). Likewise, because the consumption of different types of bread is very common [28, 29], breads and grains were examined as wheat, whole wheat or whole grain separately.

The frequency of children watching television almost every day is 92.5% and nearly half (46%) of the children aged 6–15 years use a computer according to the Statistics on Children 2014 report in Turkey [30]. For this reason, we also examined the frequency of using a computer.

Based on all the changes made, the adapted HLD-TR Index comprises 11 components (Table 1). The consumption of food groups is examined via eight components and the status of physical activity (moderate [walking, dancing, etc.] to vigorous physical activity [running, jumping, etc.]) [31], watching TV and using a computer through another three components. Assessment of the HLD-TR Index is on a five-point (0–4) scoring system. The total score that can be achieved from the index ranges from 0 to 56 points. An increase in the total score indicates the degree of adherence to a “healthy” lifestyle. All frequencies of the components were evaluated using the scores as shown in Table 1. However, in the 9th, 10th and 11th questions, which contain types of food, their first part score is obtained in two steps. First, the type of food (in parenthesis) is examined and scores are assigned for each food separately. Second, all points are added up and rescored as follows: 0 points (score: 0), 2 points (score: 1), 4 points (score: 2), 6–8 points (score: 3), 10–12 points (score 4). For the index component scores of the children see Supplementary Material Table 2.

Statistical assessment

The obtained data were divided into three tertiles – <17 points, 17–23 points and >23 points – according to the HLD-TR Index score. Inter-group differences were assessed using one-way analysis of variance (ANOVA) for parametric data and the Kruskal-Wallis test for non-parametric data. Bonferroni adjustment was performed to assess between-group differences. Correlations were calculated using the Pearson (for parametric data) or Spearman’s test (for non-parametric data). Logistic regression analysis was performed to examine the relationship between insulin resistance and the index scores and odds ratios. The statistical significance level was selected as $p < 0.05$. The SPSS version 15.0 statistical software package was used for all analyses.

Results

The characteristics of the children according to gender are shown in Table 2. The mean age of the male and female children was 11.2 ± 1.49 and 11.0 ± 1.40 years, respectively. Most of the children were obese in both genders (97.7% in males and 96.1% in females). There were no statistically significant differences in the HLD-TR scores between genders ($p > 0.05$). Although, the MAR values of the male children were higher than those of the females, they were below 100% in both genders ($p > 0.05$).

As the index scores increased, a decrease in the dietary energy intake and increase in the protein percentage were determined ($p < 0.05$). No correlation was found between other macronutrients and the index scores ($p > 0.05$) (Table 3). However, as the MARs increased, the HLD-TR Index scores also increased and the MARs were higher in the third tertile than in the first ($p < 0.05$) (Table 3).

In Table 4, negative correlations between the index scores and body mass, waist circumference and body fat mass were observed ($p < 0.05$). Body mass was lower in the third tertile than in the first; body fat mass and body fat percentage were lower in the third tertile than in other tertiles ($p < 0.05$). Furthermore, no statistically significant differences were found between the index scores and serum triglyceride, LDL-C and HDL-C levels among tertiles ($p > 0.05$). However, there were statistically significant differences between the index scores and other biochemical parameters and blood pressure among tertiles ($p < 0.05$). In addition, as the index scores increased, serum fasting glucose, insulin levels, HOMA-IR and blood pressure decreased ($p < 0.05$).

The frequency of insulin resistance was 62.2% according to the HOMA-IR assessment in children. The binary logistic regression model (Table 5) showed that a one-unit increase in the HLD-TR Index score decreases the insulin resistance risk 0.91 times after adjustments for age and gender ($p < 0.05$).

Discussion

Childhood obesity is increasing in Turkey [32], as in other parts of the world [33]. According to the results of the Turkish Nutrition and Health Study 2010, the rate of overweight children aged 6–18 years was found to be 14.3%, while the rate of obese children was 22.5% [34]. Together with this, as the eating habits and lifestyle of children and adolescents are the determinants of potential chronic diseases that might arise in later ages, the interest in these subjects has increased in recent years [35]. In this study, the HLD Index developed by Manios et al. has been adapted to Turkish culture and assessment of the compliance of overweight and obese children aged 9–13 years with the general recommendations for nutrition, and the relations between some anthropometric measurements, body composition and particularly the parameters of the metabolic syndrome have been ensured. At the end of the study, we found that the adapted index was an effective tool for the assessment of the diet/lifestyle quality in obese children. Adherence to the index was associated with decreased

Table 1: HLD-TR Index scoring system, Ankara/Turkey – 2015.

Index items	Amount	Frequency or type of foods	Score
1. Fruits, fruit juice	1 medium fruit or 1/2 water glass (or cup) of fruit juice (120 mL)	Never	0
		1–6 servings per week	1
		1–2 servings per day	2
		2–3 servings per day	3
		>3 servings per day	4
2. Vegetables, salads	8 tablespoon (110 g)	<1 serving per day	0
		1–2 servings per day	1
		2–3 servings per day	2
		3–4 servings per day	3
		>4 servings per day	4
3. Fish, seafood	2 palm-sized (60 g)	Never or rarely	0
		1–2 servings per week	2
		2–3 servings per week	4
		3–4 servings per week	3
		>4 servings per week	1
4. Sweets	30 g	Never or rarely	4
		1–2 servings per week	3
		2–4 servings per week	2
		4–6 servings per week	1
		≥1 serving per day	0
5. Soft drinks	1.25 water glass (or ~1 cup) (250 mL)	Never or rarely	4
		1–2 servings per week	3
		2–4 servings per week	2
		4–6 servings per week	1
		≥1 serving per day	0
6. Watching TV	–	<1 h/day	4
		1–2 h/day	3
		2–3 h/day	2
		3–4 h/day	1
		>4 h/day	0
7. Using computer	–	<1 h/day	4
		1–2 h/day	3
		2–3 h/day	2
		3–4 h/day	1
		>4 h/day	0
8. Physical activity	–	<15 min/day	0
		15–30 min/day	1
		30–45 min/day	2
		45–60 min/day	3
		>60 min/day	4
9. Breads and grains	1 slice of bread (25 g) or 4 tablespoon of grains	Wheat (for bread, cornflakes and rice/pasta separately)	0
		Whole wheat (for bread, cornflakes and rice/pasta separately)	2
		Whole grain (for bread, cornflakes and rice/pasta separately)	4
		<2 servings or >14 servings per day	0
		2–6 servings per day	2
10. Milk and dairy products	1.25 water glass (or ~1 cup) (250 mL)/1 small egg-sized cheese (40 g)	7–14 servings per day	4
		Whole fat (for milk, yogurt and cheese separately)	0
		Low fat (for milk, yogurt and cheese separately)	2
		Light/no fat (for milk, yogurt and cheese separately)	4
		<1 serving per day	0
11. Meat and meat products	2 palm-sized (60 g)	1–2 servings per day	2
		>2 servings per day	4
		Whole fat (for meat, chicken/turkey and processed meats separately)	0
		Medium fat (for meat, chicken/turkey and processed meats separately)	2
		Lean (for meat, chicken/turkey and processed meats separately)	4
		<1 serving per week	0
		1–2 servings per week	1

Table 1 (continued)

Index items	Amount	Frequency or type of foods	Score
		3–6 servings per week	2
		1–2 servings per day	3
		>2 servings per day	4

Table 2: Characteristics of children according to gender ($\bar{x} \pm SD$), Ankara/Turkey – 2015.

	Total (n=164)	Male (n=87)	Female (n=77)	p-Value
Age, years ^b	11.1 ± 1.45	11.2 ± 1.49	11.0 ± 1.40	0.333
Index score ^a	19.9 ± 6.31	19.4 ± 6.98	20.4 ± 5.46	0.341
HOMA-IR ^b	4.7 ± 2.73	4.8 ± 2.98	4.5 ± 2.41	0.778
MAR ^b	89.2 ± 7.93	90.5 ± 5.32	87.8 ± 9.87	0.169
Obese, % ^c	97.0	97.7	96.1	0.666

^aStudent's t-test, ^bMann-Whitney U-test, ^c χ^2 -test. HOMA-IR, homeostasis model assessment of insulin resistance; MAR, mean adequacy ratio.

insulin resistance, better blood parameters and decreased obesity measurements.

Several tools have been used to determine the dietary quality and lifestyle in developed and developing countries [36–40]. Difficulties are encountered in the scoring for some of these indices, and some others do not include any constituents related to physical activity. With this purpose in mind, some investigators have used some methods to determine the physical activities of children together with the dietary quality [6, 41, 42] because it is known that inquiring about physical activity is important as physical activity is one of the important factors affecting obesity [41]. In this regard, the index used here has been preferred as it includes the physical activity together with the diet quality and also assesses the sedentary behavior.

It was found that the dietary quality of children is poor in Turkey based on the previous studies using the Healthy Eating Index (HEI) [43, 44]. Likewise, the HLD-TR Index

scores of children in this study are also poor, and these data are supported by the food consumption records. The MAR values of children are under 100% in the present study. Therefore, it can be concluded that as the diet quality lowers, sufficient amounts of foods for ensuring nutritional diversity are not being consumed. Together with this, it has also been found that there is a tendency for energy intake to reduce, and the percentage of energy from proteins and the MAR values tend to increase with the increasing compliance with dietary and lifestyle recommendations included in the index. Thus, the increase in compliance with the dietary and lifestyle recommendations has resulted in an increase in the adequacy of the diet.

In the current study, increased index scores were negatively related with obesity measurements. While Hurley et al. [45] showed the presence of a negative correlation between the high body and abdominal fat percentages and HEI score, likewise, Jennings et al. [46] reported that increases in Dietary Quality Index (DQI) scores were related to decreases in the BMI, waist circumference and body fat. In addition to the studies with observations that dietary quality indices are negatively correlated with markers of obesity [6, 39], Royo-Bordonada et al. showed that the BMI values of children are not different based on the dietary diversity tertiles. However, it has been shown that the index scores are related to an increase in processed products, particularly processed meat products, and consequently an increase in energy intake. It has been highlighted that there can be a risk of obesity in the long term [47]. In another study, there were no differences

Table 3: Mean dietary energy, macronutrient intakes and MAR values of children according to the HLD-TR Index scores ($\bar{x} \pm SD$) and correlations, Ankara/Turkey – 2015.

Nutrients	Total (n=164)	Tertile 1 (n=49)	Tertile 2 (n=57)	Tertile 3 (n=58)	p-Value	r
Energy, kcal ^{a,c}	2257.0 ± 470.16	2385.3 ± 489.85	2214.5 ± 462.19	2181.0 ± 439.58	0.058	-0.167 ^e
Protein, % ^{b,d}	13.7 ± 2.34	13.2 ± 2.27	13.6 ± 2.30	14.2 ± 2.34	0.107	0.192 ^e
Fat, % ^{a,c}	39.5 ± 6.56	38.6 ± 6.43	39.8 ± 6.89	39.8 ± 6.39	0.571	0.063
Carbohydrate, % ^{a,c}	46.7 ± 6.76	48.1 ± 6.43	46.4 ± 6.94	45.9 ± 6.74	0.209	-0.136
Fiber, g ^{a,c}	21.3 ± 7.47	19.9 ± 5.89	22.3 ± 8.65	21.3 ± 7.28	0.255	0.117
MAR, % ^{b,d}	89.2 ± 7.93	87.7 ± 6.33 ^g	89.8 ± 7.26 ^{g,h}	90.1 ± 9.43 ^h	0.004	0.276 ^f

^aOne-way ANOVA test, ^bKruskal-Wallis test, ^cPearson correlation, ^dSpearman's correlation, ^ep < 0.05, ^fp < 0.01, ^{g,h}statistically significant. MAR, mean adequacy ratio.

Table 4: Anthropometric measurements, biochemical parameters and blood pressures of children according to the HLD-TR Index scores ($\bar{x} \pm SD$) and correlations, Ankara/Turkey – 2015.

Parameters	Total (n=164)	Tertil 1 (n=49)	Tertil 2 (n=57)	Tertil 3 (n=58)	p-Value	r
Body weight, kg ^{a,d}	66.2 \pm 17.88	75.4 \pm 19.62 ^h	65.6 \pm 16.95 ⁱ	59.1 \pm 13.33 ⁱ	0.000	-0.0378 ^f
Body fat mass, kg ^{a,d}	23.3 \pm 9.87	27.4 \pm 10.87 ^h	23.7 \pm 10.57 ^h	19.3 \pm 6.19 ⁱ	0.000	-0.378 ^g
Body fat percentage, % ^{a,e}	34.1 \pm 6.96	35.1 \pm 7.46 ^h	35.1 \pm 7.35 ^h	32.2 \pm 5.80 ⁱ	0.041	-0.0191 ^f
Waist circumference, cm ^{b,d}	92.7 \pm 14.83	99.3 \pm 10.98 ^h	91.8 \pm 15.14 ⁱ	88.2 \pm 15.41 ⁱ	0.000	-0.361 ^g
Fasting glucose, mg/dL ^{a,d}	89.6 \pm 11.38	93.7 \pm 11.34 ^h	90.2 \pm 11.48 ^{h,i}	85.5 \pm 9.95 ⁱ	0.001	-0.304 ^g
Fasting insulin, μ IU/mL ^{b,d}	20.6 \pm 10.45	23.5 \pm 11.51 ^h	22.3 \pm 10.39 ^h	16.3 \pm 8.00 ⁱ	0.001	-0.298 ^g
HOMA-IR ^{a,d}	4.7 \pm 2.73	3.0 \pm 0.44 ^h	2.7 \pm 0.35 ^h	1.9 \pm 0.25 ⁱ	0.000	-0.333 ^g
Triglyceride, mg/dL ^{a,d}	118.3 \pm 54.75	128.4 \pm 64.52	121.7 \pm 60.28	105.1 \pm 34.14	0.069	-0.132
Total cholesterol, mg/dL ^{a,d}	171.2 \pm 36.43	175.4 \pm 38.46	173.3 \pm 37.4	166.0 \pm 33.32	0.367	-0.123
LDL-C, mg/dL ^{c,d}	100.0 \pm 25.68	106.0 \pm 31.57	95.9 \pm 24.41	100.1 \pm 21.15	0.134	-0.101
HDL-C, mg/dL ^{a,d}	43.7 \pm 9.05	42.0 \pm 9.42	44.0 \pm 10.36	44.5 \pm 7.16	0.332	0.192
SBP, mmHg ^{b,d}	115.7 \pm 10.16	119.2 \pm 9.18 ^h	116.4 \pm 11.68 ^h	111.8 \pm 7.82 ⁱ	0.000	-0.319 ^g
DBP, mmHg ^{b,d}	72.4 \pm 7.56	75.1 \pm 6.80 ^h	72.7 \pm 8.34 ^{h,i}	69.7 \pm 6.38 ⁱ	0.002	-0.266 ^g

^aTukey test, ^bKruskal-Wallis test, ^cone-way ANOVA test, ^dSpearman's correlation, ^ePearson correlation, ^fp < 0.05, ^gp < 0.01, ^{h,i}statistically significant. HOMA-IR, homeostasis model assessment of insulin resistance; LDL-C, low-density lipoprotein-cholesterol; HDL-C, high-density lipoprotein-cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.

Table 5: Associations between the presence of insulin resistance and HLD-TR Index scores of the children, Ankara/Turkey – 2015.

Independent variable	Binary logistic regression	
	Presence of insulin resistance (dependent variable)	
	OR (95% CI) ^a	OR (95% CI) ^b
Index score	0.88 (0.83–0.94)	0.91 (0.85–0.97)

^aUnadjusted. ^bAdjusted for age and gender. CI, confidence interval; OR, odds ratio.

between the BMI values based on Mediterranean Diet Quality Index (KIDMED) groups; however, physical activity levels increased with increasing compliance with a Mediterranean diet [48].

The relationship between nutrition and health is clear. Therefore, associations between diet quality and diversity are factors affecting the health outcomes. In this study, better glycemic parameters and lower blood pressure were related to increased index scores. Studies relating diet quality to biochemical parameters are limited in the literature. Royo-Bordonada et al. have shown that plasma vitamin A and E levels increase with increasing diet diversity. Furthermore, plasma HDL-C levels are higher and triglyceride levels are lower in individuals with the highest tertile of dietary diversity index than in those in the lowest tertile; however, the difference is not statistically significant [47]. In a study carried out on adolescents in Germany, compliance with dietary recommendations developed based on different indices on dietary

quality had positive effects on some biochemical findings related to diabetes and cardiovascular risks (HbA_{1c}, homocysteine, C-reactive protein and diastolic blood pressure) [49]. Lazarou and colleagues showed in their study that they carried out using KIDMED and electronic kids dietary index (E-KINDEX) that compliance with the Mediterranean diet is related to the lowering of systolic and diastolic blood pressures [38, 41]. In yet another study, compliance with dietary recommendations in childhood was related to a decrease in diastolic blood pressure [50]. As we have seen, it has been shown once again in this study that low diet quality can be related to obesity, increased blood pressure, glucose and insulin values that are included in the risk factors particularly for metabolic syndrome and cardiovascular diseases.

Manios et al. [11] showed that the increase in the compliance with dietary recommendations included in this index used is effective in reducing insulin resistance. Likewise, insulin resistance decreased even after the adjustments for age and gender in the regression model, and it has been shown that a one-unit increase in the HLD-TR Index score decreases the insulin resistance risk 0.91 times after adjustments for age and gender. It is thought that insulin resistance is involved in the etiology of several diseases [51] and it is a known fact that it is related to nutrition [52] together with its genetic bases [53]. Paying attention to dietary habits during childhood will reduce the risk of having chronic diseases later in life. In this regard, the importance of nutrition education is increasing. Dixon et al. have reported that nutrition education is effective in terms of overall diet quality [40].

The strength of the study is determining the quality of the diet as a whole, including lifestyle habits, and assessing with an applicable index that includes nutritional guidance recommendations and dietary habits in Turkey. However, it is necessary to evaluate the validity of the study by applying it on children who are not obese with a larger sample. Furthermore, we used the 24-h dietary recall for assessing the dietary energy and nutrient intakes. Although, it is an accepted method, a 3-day recall or record would be used. To reduce the errors we obtained data from children and their parents face-to-face.

In conclusion, the HLD-TR Index is a valid tool that can give an idea about the quality of the diet in overweight/obese children and can be used to determine the diet quality and lifestyle of this age group in Turkey. Furthermore, with the increase in the compliance with recommendations for diet and lifestyle, some indicators of obesity, metabolic syndrome and cardiovascular diseases were decreased. Therefore, it will be beneficial to plan nutrition education in accordance with the assessments made using this index and taking the recommendations made in the Turkish Nutritional Guidelines into consideration.

Acknowledgments: The authors are grateful to individuals who participated in the survey and to anonymous reviewers for their comments.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Kopelman PG. Obesity as a medical problem. *Nature* 2000; 404:635–43.
2. Wabitsch M. Overweight and obesity in European children: definition and diagnostic procedures, risk factors and consequences for later health outcome. *Eur J Pediatr* 2000; 159:8–13.
3. Gicevic S, Aftosmes-Tobio A, Manganello J, Ganter C, Simon C, et al. Parenting and childhood obesity research: a quantitative content analysis of published research 2009–2015. *Obes Rev* 2016;17:724–34.
4. Dehghan M, Akhtar-Danesh N, Merchant AT. Childhood obesity, prevalence and prevention. *Nutr J* 2005;4:1.
5. Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput JP, et al. Relationship between lifestyle behaviors and obesity in children ages 9–11: results from a 12-country study. *Obesity* 2015;23:1696–702.
6. Kontogianni MD, Farmaki A-E, Vidra N, Sofrona S, Magkanari F, et al. Associations between lifestyle patterns and body mass index in a sample of Greek children and adolescents. *J Am Diet Assoc* 2010;110:215–21.
7. Moschonis G, Kalliora AC, Costarelli V, Papandreou C, Koutoukidis D, et al. Identification of lifestyle patterns associated with obesity and fat mass in children: the Healthy Growth Study. *Public Health Nutr* 2014;17:614–24.
8. Ho M, Garnett SP, Baur L, Burrows T, Stewart L, et al. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. *Pediatrics* 2012;130:1647–71.
9. Aranceta J, Perez-Rodrigo C, Ribas L, Serra-Majem L. Sociodemographic and lifestyle determinants of food patterns in Spanish children and adolescents: the enKid study. *Eur J Clin Nutr* 2003;57:40–4.
10. Manios Y, Kourlaba G, Grammatikaki E, Androutsos O, Moschonis G, et al. Development of a diet-lifestyle quality index for young children and its relation to obesity: the Preschoolers Diet-Lifestyle Index. *Public Health Nutr* 2010;13:2000–9.
11. Manios Y, Kourlaba G, Grammatikaki E, Koubitski A, Siatitsa P, et al. Development of a lifestyle-diet quality index for primary schoolchildren and its relation to insulin resistance: the Healthy Lifestyle-Diet Index. *Eur J Clin Nutr* 2010;64:1399–406.
12. Chan T-F, Lin W-T, Huang H-L, Lee C-Y, Wu P-W, et al. Consumption of sugar-sweetened beverages is associated with components of the metabolic syndrome in adolescents. *Nutrients* 2014;6:2088–103.
13. Sayón-Orea C, Bes-Rastrollo M, Martí A, Pimenta AM, Martín-Calvo N, et al. Association between yogurt consumption and the risk of metabolic syndrome over 6 years in the SUN study. *BMC Public Health* 2015;15:1.
14. Cardel M, Lemas DJ, Jackson KH, Friedman JE, Fernández JR. Higher intake of PUFAs is associated with lower total and visceral adiposity and higher lean mass in a racially diverse sample of children. *J Nutr* 2015;145:2146–52.
15. Heshmat R, Qorbani M, Babaki AE, Djalalinia S, Ataei-Jafari A, et al. Joint Association of Screen Time and Physical Activity with Cardiometabolic Risk Factors in a National Sample of Iranian Adolescents: the CASPIANIII Study. *PLoS One* 2016;11:0154502.
16. Marshall S, Burrows T, Collins C. Systematic review of diet quality indices and their associations with health-related outcomes in children and adolescents. *J Hum Nutr Diet* 2014;27:577–98.
17. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES) anthropometry procedures manual. USA, 2007.
18. World Health Organization. Growth reference data for 5–19 years, WHO Reference 2007. Available at: http://www.who.int/growthref/who2007_bmi_for_age/en/. Accessed: 8 Jul 2016.
19. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, et al. Recommendations for blood pressure measurement in humans and experimental animals. *Circulation* 2005;111:697–716.

20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, et al. Homeostasis model assessment: insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia* 1985;28:412419.
21. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. *Pediatrics* 2005;115:e500–3.
22. BeBiS. Nutrition Data Base Software Data Base. The German Food Code and Nutrient Data Base (BLS II.3, 1999) with additions from UDSA-sr and other sources. Istanbul, 2004.
23. IOM. Dietary Reference Intakes Washington DC: The National Academy Press. Available at: https://iom.nationalacademies.org/~/media/Files/Activity%20Files/Nutrition/DRIs/5_Summary%20Table%20Tables%201-4.pdf. Accessed: 6 Jun 2016.
24. Sağlık Bakanlığı TC. Türkiye Beslenme Rehberi 2015 [Turkish Nutrition Guideline 2015], 1st ed. Ankara, 2016.
25. Şeker İ, Özén A, Güler H, Şeker P, Özden İ. Elazığ'da kırmızı et tüketim alışkanlıkları ve tüketicilerin hayvan refahı konusundaki görüşleri [Red meat consumption habits in Elazığ and consumer opinions on animal welfare]. *Kafkas Univ Vet Fak Derg* 2011;17:543–50.
26. Karakuş K, Aygün T, Alarslan E. Gaziantep ili merkez ilçede kırmızı et tüketim alışkanlıkları [Red meat consumption habits in Gaziantep centerium]. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 2008;18:113–20.
27. Atay O, Gökdal Ö, Aygün T, Ülker H. Aydın ili Çine ilçesinde kırmızı et tüketim alışkanlıkları [Red meat consumption habits in Aydın Çine]. 4. Ulusal Zootekni Bilim Kongresi 2004;1:1–4.
28. Demir MK, Kartal H. Konya ilinde farklı ekmek çeşitlerini tüketen bireyler üzerinde yapılan bir anket çalışması [A questionnaire survey on individuals who consumed different kinds of bread in Konya]. *Gıda Teknolojileri Elektronik Dergisi* 2012;7:59–64.
29. Ertürk A, Arslantaş N, Sarıca D, Demircan V. Isparta ili kentsel alanda ailelerin ekmek tüketimi ve israfı [Bread consumption and expenditure of families in Isparta]. *Akademik Gıda* 2015;13:291–8.
30. Turkish Statistical Institute. Statistics on Child 2014. Ankara, 2015.
31. American Academy of Pediatrics. Bright Futures Obesity Prevention Training For Child Care Providers, Moderate and Vigorous Physical Activity. Available at: <https://www.brightfutures.org/one-step/module-2/page-2-5.html>. Accessed: 13 Jan 2018.
32. Erem C. Prevalence of overweight and obesity in Turkey. *IJC Metab Endocr* 2015;8:38–41.
33. Kollias A, Skliros E, Stergiou GS, Leotsakos N, Saridi M, et al. Obesity and associated cardiovascular risk factors among schoolchildren in Greece: a cross-sectional study and review of the literature. *J Pediatr Endocrinol Metab* 2011;24:929–38.
34. Sağlık Bakanlığı Sağlık Araştırmaları Genel Müdürlüğü, Hacettepe Üniversitesi, Sağlık Bilimleri Fakültesi ve Ankara Numune Eğitim ve Araştırma Hastanesi. Türkiye Beslenme ve Sağlık Araştırması 2010: Beslenme Durumu ve Alışkanlıklarının Değerlendirilmesi Sonuç Raporu [Turkey Nutrition and Health Survey 2010: Report on the Evaluation of Nutrition Status and Habits]. Ankara, 2014.
35. Lake AA, Mathers JC, Rugg-Gunn AJ, Adamson AJ. Longitudinal change in food habits between adolescence (11–12 years) and adulthood (32–33 years): the ASH30 study. *J Public Health* 2006;28:10–6.
36. Kennedy E, Ohls J, Carlson S, Fleming K. The healthy eating index: design and applications. *J Am Diet Assoc* 1995;95:1103–8.
37. Serra-Majem L, Ribas L, Ngo J, Ortega RM, García A, et al. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. *Public Health Nutr* 2004;7:931–5.
38. Lazarou C, Panagiotakos DB, Matalas A-L. Foods E-KINDEX: a dietary index associated with reduced blood pressure levels among young children: the CYKIDS study. *J Am Diet Assoc* 2009;109:1070–5.
39. Feskanich D, Rockett HR, Colditz GA. Modifying the Healthy Eating Index to assess diet quality in children and adolescents. *J Am Diet Assoc* 2004;104:1375–83.
40. Dixon LB, Tershakovec AM, McKenzie J, Shannon B. Diet quality of young children who received nutrition education promoting lower dietary fat. *Public Health Nutr* 2000;3:411–6.
41. Lazarou C, Panagiotakos D, Matalas A. Lifestyle factors are determinants of children's blood pressure levels: the CYKIDS study. *J Hum Hypertens* 2009;23:456–63.
42. Lazarou C, Panagiotakos DB, Matalas A-L. Physical activity mediates the protective effect of the Mediterranean diet on children's obesity status: the CYKIDS study. *Nutrition* 2010;26:61–7.
43. Acar Tek N, Yıldırın H, Akbulut G, Bilici S, Koksal E, et al. Evaluation of dietary quality of adolescents using Healthy Eating Index. *Nutr Res Pract* 2011;5:322–8.
44. Köksal E, Tekçicek M, Yalçın SS, Tugrul B, Yalçın S, et al. Association between anthropometric measurements and dental caries in Turkish school children. *Cent Eur J Public Health* 2011;19:147.
45. Hurley KM, Oberlander SE, Merry BC, Wrobleksi MM, Klassen AC, et al. The healthy eating index and youth healthy eating index are unique, nonredundant measures of diet quality among low-income, African American adolescents. *J Nutr* 2009;139:359–64.
46. Jennings A, Welch A, van Sluijs EM, Griffin SJ, Cassidy A. Diet quality is independently associated with weight status in children aged 9–10 years. *J Nutr* 2011;141:453–9.
47. Royo-Bordonada M, Gorgojo L, Ortega H, Martín-Moreno J, Lasunción M, et al. Greater dietary variety is associated with better biochemical nutritional status in Spanish children: the Four Provinces Study. *Nutr Metab Cardiovasc Dis* 2003;13:357–64.
48. Farajian P, Risvas G, Karasouli K, Pounis GD, Kastorini CM, et al. Very high childhood obesity prevalence and low adherence rates to the Mediterranean diet in Greek children: the GRECO study. *Atherosclerosis* 2011;217:525–30.
49. Trüthmann J, Richter A, Thiele S, Drescher L, Roosen J, et al. Associations of dietary indices with biomarkers of dietary exposure and cardiovascular status among adolescents in Germany. *Nutr Metab* 2012;9:1.
50. Golley RK, Smithers LG, Mittinty MN, Emmett P, Northstone K, et al. Diet quality of UK infants is associated with dietary, adiposity, cardiovascular, and cognitive outcomes measured at 7–8 years of age. *J Nutr* 2013;143:1611–7.
51. Sesti G. Pathophysiology of insulin resistance. *Best Pract Res Clin Endocrinol Metab* 2006;20:665–79.
52. Blasetti A, Franchini S, Comegna L, Prezioso G, Chiarelli F. Role of nutrition in preventing insulin resistance in children. *J Pediatr Endocrinol Metab* 2016;29:247–57.
53. Deer J, Koska J, Ozias M, Reaven P. Dietary models of insulin resistance. *Metabolism* 2015;64:163–71.

Supplemental Material: The online version of this article offers supplementary material (<https://doi.org/10.1515/jpmem-2017-0271>).