

Measuring food insecurity in Türkiye: validation of the four domain food insecurity scale (4D-FIS)

Cansu Memiç-İnan, Büşra Başpınar & Fatih İmrol

To cite this article: Cansu Memiç-İnan, Büşra Başpınar & Fatih İmrol (2026) Measuring food insecurity in Türkiye: validation of the four domain food insecurity scale (4D-FIS), *Journal of Hunger & Environmental Nutrition*, 21:1, 152-167, DOI: [10.1080/19320248.2025.2609131](https://doi.org/10.1080/19320248.2025.2609131)

To link to this article: <https://doi.org/10.1080/19320248.2025.2609131>

[View supplementary material](#)

Published online: 24 Dec 2025.

[Submit your article to this journal](#)

Article views: 91

[View related articles](#)

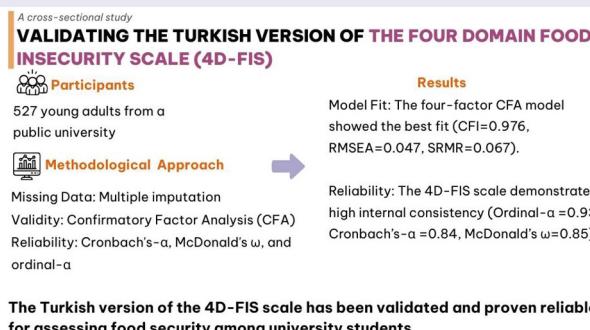
[View Crossmark data](#)

ORIGINAL RESEARCH

Measuring food insecurity in Türkiye: validation of the four domain food insecurity scale (4D-FIS)

Cansu Memiç-İnan^a, Büşra Başpınar^b, and Fatih İmrol^c

^aDepartment of Nutrition and Dietetics, Faculty of Health Sciences, Hıtit University, Çorum, Türkiye;


^bDepartment of Nutrition and Dietetics, Faculty of Health Sciences, Erzincan Binali Yıldırım University, Erzincan, Türkiye; ^cDepartment of Measurement and Evaluation in Education, Faculty of Educational Sciences, İstanbul Medeniyet University, İstanbul, Türkiye

ABSTRACT

The aim was to conduct the Turkish validity and reliability study of the Four-Domain Food Insecurity Scale (4D-FIS). In this cross-sectional study, confirmatory factor analysis (CFA) was used to test the validity of the 4D-FIS scale. The 4D-FIS scale consists of four domains: quantitative, qualitative, psychological, and social. The Cronbach's α of the 4D-FIS scale was 0.84, indicating that the scale was reliable. CFA confirmed the four-factor structure of the 4D-FIS, with fit indices indicating good model fit. The Turkish 4D-FIS scale was found to be valid and reliable for evaluating food security in the quantitative, qualitative, psychological, and social domains.

KEYWORDS

Food insecurity; validity; confirmatory factor analysis

Introduction

According to the Food and Agriculture Organization of the United Nations, food insecurity is defined as the lack of regular access to sufficient, safe, and nutritious food to maintain an active and healthy life.¹ It is characterized by inadequate food consumption, limited food availability, and vulnerability to subsistence strategies that cannot withstand unexpected events.² The severity

CONTACT Cansu Memiç-İnan cansumemicinan@hitit.edu.tr; dyt.cansumemic@gmail.com Department of Nutrition and Dietetics, Faculty of Health Sciences, Hıtit University, Bahçelievler, Samsun Street No: 96, Çorum 19200, Türkiye

 Supplemental data for this article can be accessed online at <https://doi.org/10.1080/19320248.2025.2609131>

© 2025 Taylor & Francis Group, LLC

of food insecurity is generally classified as mild (marginal), moderate, and severe. Mild or marginal food insecurity reflects occasional concerns about food access and minor compromises in diet quality. Moderate food insecurity involves more frequent reductions in the quantity or quality of food consumed. Severe food insecurity is characterized by skipping meals or going without food for an entire day due to a lack of resources.³

Although some efforts are being made to address insufficient nutrition and hunger, food insecurity is still a major concern worldwide.^{4,5} According to the 2022 reports of the Food and Agriculture Organization of the United Nations (FAO), the prevalence of moderate food insecurity has remained stable after significantly increasing in 2020.⁶ However, severe food insecurity has continued to rise, with approximately 2.3 billion people worldwide facing moderate or severe food insecurity in 2021, or 11.7% of the global population.⁷

In recent years, food insecurity among university students has gained increasing attention. Food insecurity in this population is considered a significant public health issue, as it affects students' dietary quality, mental health, academic performance, and graduation rates.^{8,9} Studies conducted among university students in Türkiye have reported food insecurity prevalence rates ranging from 35.5% to 68.2%.^{10,11} Accurately identifying the scope and forms of food insecurity experienced by students is of critical importance, particularly given evidence indicating a rapid increase in these rates during the COVID-19 pandemic.¹² In addition to financial constraints specific to university students and rising housing and food costs,¹³ broader socioeconomic factors in Türkiye, such as high food inflation, income inequalities, and structural vulnerabilities, further increase the risk of food insecurity among university students.^{14–17}

Food insecurity increases the risk of developing a wide range of health problems, including infectious diseases, poor oral health, injuries, depression, anxiety disorders, heart disease, hypertension, arthritis, back problems, and chronic pain.^{18,19} Moreover, it has been reported to have negative effects not only on health outcomes but also on various other areas, such as access to health insurance, the availability of healthcare services, emergency department utilization, and financial burden.²⁰ Therefore, measuring food insecurity is highly important for understanding both its health-related and socio-economic consequences. The estimate of food insecurity has been based on the U.S. Department of Agriculture (USDA) Food Security Survey Module (FSSM) measure since 1995.²¹ The purpose of these questions was to monitor changes in the prevalence and severity of food insecurity among U.S. households. For a long time, the prevalence of food insecurity has remained stable, ranging from about 10% to 15%, depending on economic fluctuations.²² However, it has been argued that the FSSM is inadequate in measuring changes in food insecurity.²³ Maynard et al.²⁴

argue that the FSSM is useful in providing standardized data but “may not accurately classify households and may not provide insights into the severity of food insecurity.” Food insecurity includes four domains: quantitative (insufficient food), qualitative (insufficient food quality), psychological (uncertainty and anxiety about food), and social (social unacceptability).^{21,25,26} However, FSSM does not pay much attention to social or psychological indicators such as deprivation, alienation, and shame.^{23,24}

Although the FSSM has been used for years and has yielded comprehensive data, more comprehensive measurement methods are needed. Comprehensive measures of food insecurity are needed to understand how the severity of food insecurity impacts health, especially for vulnerable and marginalized communities at higher risk of food insecurity. Johnson et al. developed and tested a complementary tool, the Four Domain Food Insecurity Scale (4D-FIS), to more comprehensively assess the four domains of food insecurity (quantitative, qualitative, psychological, and social).²³ This study aimed to determine its validity and reliability in Turkish university students. In this context, accurately assessing food insecurity among university students is critically important for understanding its impact on both health and academic outcomes.

Materials and methods

Study population and data collection

The study data were collected from university students who agreed to participate in the study between July and September 2024. The inclusion criteria for the study were being aged 19–29 years, not having a chronic disease, and providing voluntary consent to participate in the study. Those who were pregnant/breastfeeding, those with a chronic disease, and those who did not sign the voluntary consent form were not included in the study. Ethics committee approval was received from Erzincan Binali Yıldırım University Rectorate for the study (No. 050.04-369107). Voluntary consent was obtained from all participants in the study, which was conducted in accordance with the Declaration of Helsinki. In calculating the sample size, Osborne and Costello stated that 5–10 times the number of items should be reached.²⁷ Therefore, it was aimed to reach at least 160 individuals for the 4D-FIS scale consisting of 16 items. Within the scope of the study, 547 individuals between the ages of 19–29 were reached, but 20 were excluded for various reasons (pregnant or breastfeeding, n = 4; having a chronic disease, n = 7; refusing to provide voluntary consent, n = 5; or with incomplete survey data, n = 4). As a result, 527 individuals meeting the inclusion criteria constituted the sample.

Measures

General information

In the general information section of the questionnaire, participants' characteristics such as sex, age, income, smoking, and alcohol consumption were questioned. To assess income status, participants were asked the question "How would you evaluate your income status?" with response options of low, medium, and high. Participants' body weight was measured using a calibrated scale with 0.1 kg sensitivity, while they wore light clothing and no shoes. Height was measured with a non-stretch measuring tape, with participants standing upright in the Frankfurt plane and ensuring that the head, hips, and heels were in contact with the wall.²⁸ BMI was calculated using body weight and height measurements (body weight (kg)/height (m)²) and classified according to WHO criteria.²⁹

Four-domain food insecurity scale

First, permission for the translation of the 4D-FIS was obtained via e-mail from Johnson et al. who developed the scale.²³ The English version of the 4D-FIS was translated into Turkish. The translation was done using the forward-backward translation method. For the forward translation method, a bilingual translator and a native Turkish bilingual academic translated the scale into Turkish without the knowledge of each other. The two versions were checked and discrepancies were edited collaboratively by the researchers. The scale was then translated back into English by a completely blind bilingual translator. Finally, a three-member expert panel (consisting of academic experts) evaluated both translations for inconsistencies between the two versions and developed a preliminary final version of the scale.

A pilot study was conducted with 10 participants selected from the same university as the main sample to evaluate the scale and test its comprehensibility. Participants completed a survey in which they were asked whether the items were understandable and meaningful, and were invited to provide feedback and suggest any necessary changes.

The 4D-FIS Scale is a Likert-type scale (Cronbach- α = 0.69–0.91) consisting of 16 items developed by Johnson et al.²³ The scale consists of four domains: the quantitative domain includes 3 items, the qualitative domain includes 6 items, the psychological domain includes 3 items, and the social domain includes 4 items. Response options for quantitative, qualitative, and psychological items range from 4 categories: "Frequently," "Sometimes," "Rarely," and "Never"; for social items range from 5 categories: "Strongly agree" to "Strongly disagree." These responses were then converted to binary scoring. In calculating the first three subscale scores, the responses given to the items (often, sometimes) are scored as "1" and the others as "0." The scores obtained were added together to create the subscale scores.

Household food security survey module-short form (hfssm-SF)

To determine the food security of the participants, the Household Food Security Survey Module-Short Form (HFSSM-SF), developed by the USDA, was used.³⁰ The reliability and validity of the Turkish version of the scale were established by Emiral et al.³¹ The scale, consisting of six items, is Likert-type. Positive responses to the statements in the scale items ("yes," "sometimes true" and "mostly true") are worth 1 point. The scores obtained from the scale range between 0 and 6. Based on the total score obtained from the scale, the classification is as follows: a score of 0 indicates high food security, 1 indicates marginal food security, 2–4 indicates low food security and 5–6 indicates very low food security.³⁰ Food insecurity refers to the total number of households with low and very low food security. High food security indicates that all household members always have access to sufficient food. Marginal food security reflects concerns about having insufficient resources for food. Food insecurity involves a decrease in the quality and variety of food intake (low food security) or a reduction in both the quantity and quality of food consumed (very low food security).^{30,31}

Statistical analyses

Missing data analysis showed that missing data in the scale items varied between 2.3% and 11.8%, and Little MCAR test showed that missing data were not completely randomly distributed ($\chi^2(1830) = 2338.46$, $p < .00$). As no distinct pattern was identified in the missing data, the Multiple Imputation (MI) method was employed to generate five different datasets. In the presence of item nonresponse, MI is widely recommended because it offers greater flexibility than deletion based methods and reduces missing data related bias while improving the accuracy of parameter estimates.^{32–34} Continuous scores were calculated in these data sets and then converted into binary categories. All analyses were performed on five data sets and the average value was presented.

Confirmatory Factor Analysis (CFA) was conducted to test the validity of the scale. CFA is a technique that requires an a priori conceptual model and evaluates how well this predefined factor solution fits the data, which makes it particularly suitable to test for validity when the latent structure has already been established in prior research.^{35,36} In this context, the four-factor structure in the original scale, the structure in which all items are collected under a single factor, and the second-level CFA were tested to examine whether there is a hierarchical structure between the items. The analyses were performed with Mplus 8.3 software and Weighted Least Squares Mean and Variance Adjusted (WLSMV) was used as the estimation method.³⁷ In assessing the model-data fit, the Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), and Standardized Root Mean Square Residual (SRMR) values were examined. An RMSEA value of ≤ 0.06

indicates a perfect fit, while a value of ≤ 0.08 signifies a good fit. As CFI values approach 1, the model fit improves; values greater than 0.90 indicate an acceptable fit, while values greater than 0.95 represent a good fit. An SRMR value of ≤ 0.08 represents a perfect fit, while a value of ≤ 0.10 indicates an acceptable fit.³⁸ Given that recommended cutoff values for fit indices are not absolute and may vary depending on model complexity and sample characteristics,³⁹ the evaluation of model fit also considered additional guidelines presented in the literature.⁴⁰ Other analyses were performed with SPSS 26.0 and R 4.4.^{41,42}

The internal consistency analyses examined the reliability of 4D-FIS and its subscales, Ordinal alpha, and McDonald's- ω coefficient. While determining the internal consistency of the original scale, Cronbach- α values are also presented in this study to report Cronbach- α values and to ensure comparability with these values. Gadermann et al.⁴³ stated that the use of Ordinal- α is more appropriate than Cronbach alpha in structures consisting of items scored in ordinal categorical type. Nunnally and Bernstein^{44,45} stated that values of 0.70 and above are moderate, values of 0.80 and above are appropriate, and values of 0.90 and above are desired values for internal consistency. Also according to Salvucci et al.⁴⁵ internal consistency values below 0.50 are considered as low, values between 0.50 and 0.80 as moderate, and values above 0.80 as highly reliable.

The Pearson correlation coefficient was used to determine the relationships between variables. The statistical significance level was determined as 0.05 in all analyses.

Results

General information about the individuals participating in the study is given in Table 1. 69.6% of the participants were female and the average age was 21.2 ± 2.0 years. Those with normal body weight constituted 67.6% of the sample (average BMI = 22.3 ± 3.6 kg/m²). 44.8% of the individuals participating in the study had low income and 91.1% did not have a chronic disease. The majority of the participants did not smoke (56.0%) and did not consume alcoholic beverages (56.2%). When the food security status was examined, it was determined that 13.1% of the participants had very low, 39.5% low, 22.0% marginal and 25.4% high food security.

Confirmatory factor analysis

The minimum value for item factor loading should be 0.30.⁴⁶ Confirmatory factor analyses showed that factor loadings for all items in all models were higher than 0.30. A comparison of the three models was made according to the model fit indices presented in Table 2. Model 1 (CFA), which shows the four-

Table 1. General information about the participants.

Variables	<i>n</i> (%) or $X \pm SD$
Age (years)	21.2 \pm 2.0
Sex	
Female	367 (69.6)
Male	160 (30.4)
BMI (kg/m²)	22.3 \pm 3.6
Underweight	67 (12.7)
Normal	356 (67.6)
Overweight	84 (15.9)
Obesity	20 (3.8)
Income	
Low	236 (44.8)
Medium	233 (44.2)
High	58 (11.0)
Chronic disease	
Yes	47 (8.9)
No	480 (91.1)
Smoking	
Yes	199 (37.8)
No	295 (56.0)
Give up	33 (6.3)
Alcohol consumption	
Yes	206 (39.1)
No	296 (56.2)
Give up	25 (4.7)
Food security status*	
Very low food security	69 (13.1)
Low food security	208 (39.5)
Marginal food security	116 (22.0)
High food security	134 (25.4)

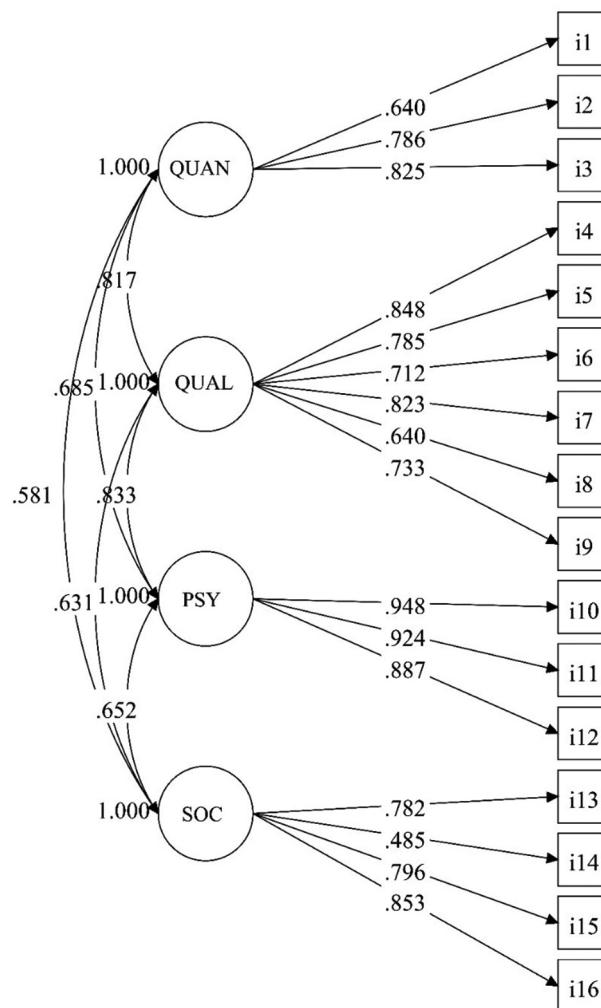

*The Household Food Security Survey Module-Short Form (HFSSM-SF) was used. BMI = body mass index.

Table 2. Model-data fit indices of the models examined for 4D-FIS.

Model	χ^2	df	CFI	RMSEA	SRMR
CFA (Model 1)	193.77	98	0.976	0.047	0.067
Second Order CFA (Model 2)	212.87	101	0.972	0.046	0.071
Unidimensional (Model 3)	381.42	104	0.930	0.071	0.092

CFA = confirmatory factor analysis; CFI = comparative fit index; RMSEA = root mean square error of approximation; SRMR = standardized root mean square residual; df = degrees of freedom; 4D-FIS = Four-Domain Food Insecurity Scale.

factor CFA model, stands out as the model with the best-fit indices. The CFI (0.976) and RMSEA (0.047) values of this model show that the model fits the data very well. In addition, the SRMR value is quite low at 0.067, supporting that the model has a high fit. When the CFI (0.972) and RMSEA (0.046) values of Model 2 (Second Order CFA) are examined, it is seen that this model also provides a very good fit, but it has a lower fit compared to Model 1. The SRMR value is 0.071, slightly higher than Model 1, but still within acceptable limits. Model 3 (Unidimensional) is the model with the lowest fit indices. The χ^2 value is quite high with 381.42 and 104 degrees of freedom, which shows that the model fits the data poorly. In addition, the CFI (0.930), RMSEA (0.071)

Figure 1. Factor loadings and inter-factor correlations of the CFA model (CFA – model 1). quan = quantitative; qual = qualitative; PSY = psychological; SOC = social.

and SRMR (0.092) values reveal that this model has lower fit indices than the other two models. In general, the analysis results showed that the Model 1 had best model fit indices ($\chi^2 (98) = 193.77$, RMSEA = 0.05, CFI = 0.98, SRMR = 0.07). [Figure 1](#) demonstrates the model-fit indices of the 4D-FIS scale, for Model 1 (CFA). Model 2 (second-order CFA) and Model 3 (unidimensional CFA) are provided as supplementary materials.

Reliability

To determine the reliability of the 4D-FIS scores, internal consistency analysis using Ordinal alpha, Cronbach's alpha, and McDonald's omega coefficients were calculated ([Table 3](#)). As a result of the reliability analysis, Ordinal alpha,

Table 3. Reliability coefficient values of 4D-FIS and subscales.

	Number of items	Ordinal- α	McDonald's ω	Cronbach's- α
Quantitative	3	0.79	0.61	0.59
Qualitative	6	0.87	0.74	0.74
Psychological	3	0.94	0.80	0.80
Social	4	0.80	0.66	0.62
4D-FIS	16	0.93	0.85	0.84

4D-FIS = Four-Domain Food Insecurity Scale.

Table 4. Correlations between the 4D-FIS scale, its subscales, HFSSM-SF, BMI, age and sex.

	1	2	3	4	5	6	7	8	9
1. 4D-FIS total score	1	0.73*	0.87*	0.71*	0.71*	0.51*	0.05	0.02	-0.08*
2. Quantitative		1	0.54*	0.38*	0.35*	0.37*	0.01	-0.04	-0.01
3. Qualitative			1	0.54*	0.42*	0.43*	0.05	0.03	-0.07
4. Psychological				1	0.38*	0.27*	0.04	0.02	-0.06
5. Social					1	0.38*	0.05	0.03	-0.10*
6. HFSSM-SF						1	-0.02	0.00	-0.05
7. BMI							1	0.10*	-0.13*
8. Age								1	0.05
9. Sex									1

* $p < .05$, 4D-FIS = Four-Domain Food Insecurity Scale; HFSSM-SF = Household Food Security Survey Module-Short Form; BMI = body mass index.

Cronbach's alpha, and McDonald's ω values of 4D-FIS were found to be 0.93, 0.84, and 0.85, respectively. Ordinal alpha values for 4D-FIS subscales ranged between 0.79 and 0.94, Cronbach's alpha values ranged between 0.59 and 0.80 and McDonald's ω values ranged between 0.61 and 0.80. According to levels of ordinal alpha, 4D-FIS showed adequate internal consistency estimates for all subscales.

4d-Fis and its subscale relationships with hfssm-Sf, BMI, age and sex

Table 4 shows the correlations between the 4D-FIS scale total score and its domains (Quantitative, Qualitative, Psychological, Social), as well as HFSSM-SF, BMI, age, and sex. The 4D-FIS total score showed strong and significant relationships with the quantitative ($r = 0.73$, $p < .05$), qualitative ($r = 0.87$, $p < .05$), psychological ($r = 0.71$, $p < .05$) and social ($r = 0.71$, $p < .05$) domains. In addition, a moderate positive significant correlation ($r = 0.51$, $p < .05$) was found between the 4D-FIS scale total score and the HFSSM-SF scale total score. The correlations between the total 4D-FIS score and BMI ($r = 0.05$, $p > .05$) and age ($r = 0.02$, $p > .05$) were not significant. In addition, a point-biserial correlation showed that females had higher total 4D-FIS scores than males ($r = -0.08$, $p < .05$; sex coded as 0 = male, 1 = female).

Discussion

This study aimed to examine the psychometric properties of the Turkish version of the 4D-FIS scale in university students. This study was the first to

investigate the validity and reliability of the 4D-FIS scale in Türkiye. The results of the study reveal that the Turkish version of the 4D-FIS scale has strong psychometric properties.

Household Food Security Survey Module – Short Form (HFFSM-SF) is a scale used to assess food security at the household level and its Turkish validation was conducted by Emiral et al.³¹ The Turkish validity and reliability study of the U.S. Adult Food Security Survey Module (AFSSM) was completed in 2024 to assess food security at the individual level.⁴⁷ However, this scale does not assess the psychological or social experiences of food insecurity.⁴⁸ In addition to determining food security at the individual level, the 4D-FIS scale has the ability to evaluate food security across four different domains: quantitative, qualitative, psychological, and social. Thus, the 4D-FIS scale provides a more comprehensive assessment of individual food security than HFFSM-SF. With the Covid-19 pandemic, food insecurity has increased significantly in the world and Türkiye. In addition, due to natural disasters such as earthquakes that have occurred in recent years⁴⁹ and hosting refugees,¹¹ a multidimensional assessment of food insecurity in Türkiye has become essential.

In the United States, food insecurity among university students increased from 11% to 15% between 2015 and 2019,⁹ and in a study conducted in Australia, it was determined that more than half of the students (54%) experienced food insecurity.⁵⁰ In various studies conducted among university students in Türkiye, the prevalence of food insecurity was found to be between 33 and 68.2%.^{10,11,51} In this study, 13.1% of the students were found to have very low and 39.5% low food security.

The analysis results showed that the 4D-FIS scale had sufficient internal reliability (Cronbach- α = 0.84, ω = 0.85). The Cronbach- α coefficient in the 4D-FIS scale developed by Johnson et al. was found to be 0.90. Similar results were obtained in other validity and reliability studies.²³ In validity and reliability studies conducted in different countries, the Cronbach- α coefficient was found to be 0.77,⁴⁷ .84,⁵² and the omega coefficient was 0.72.⁵³ Although Cronbach- α is a widely used method to assess internal consistency, it may have some limitations when working with ordinal data.

Cronbach- α may misleadingly underestimate reliability values, especially in scales based on ordinal categorical data such as Likert-type scales. Ordinal alpha is a method designed to suit the nature of ordinal data and provides more accurate modeling of the data set. Therefore, ordinal alpha provides a more reliable measure of internal consistency in ordinal data.^{43,54} Since the 4D-FIS scale validated in our study is a Likert-type scale, ordinal alpha values were also examined. It was determined that ordinal alpha showed better internal consistency than Cronbach- α in both the overall scale and domains.

In this study, 3 different models were tested for the construct validity of the 4D-FIS scale. It was observed that the four-factor model (Model 1) and the second-order CFA model (Model 2) best reflected the construct validity

of the scale. However, similar to the results of Johnson and colleagues,²³ the four-factor structure was confirmed and the fit indices were found to be well-fitting. It was observed that the fit indices of the single-factor model were lower. In this study, the convergent validity of the 4D-FIS scale was evaluated by examining its correlation with HFFSM-SF, the only scale validated in Turkish for determining food insecurity in our country. Our findings showed that the 4D-FIS scale had a moderately significant positive correlation with HFFSM-SF. Johnson et al.²³ reported that the agreement between the two scales was moderate in the triple and binary categorization comparisons between 4D-FIS and USDA FSSM. HFFSM-SF is an effective tool for measuring the access dimension of food insecurity, particularly the quantitative and qualitative domains, but it does not assess the psychological or social experiences of food insecurity.

In this study, the relationship between HFSSM-SF and the social and psychological scores of the 4D-FIS domains was weaker than that of the other domains. In this context, it can be said that 4D-FIS scale offers a broader perspective in assessing food security compared to HFSSM-SF. Since this scale has not been validated in different countries, the validity results could not be compared.

Many studies have shown that various demographic factors are associated with food insecurity.^{55,56} In this study, while age and BMI were not found to be associated with food insecurity (4D-FIS score), it was determined that the 4D-FIS score was higher in female participants. Although some studies reported that food insecurity increases the risk of obesity,^{57,58} some studies did not find any association.^{10,59} In a meta-analysis by Jung et al, it was determined that female participants were 1.4 times more likely to report food insecurity than male participants.⁶⁰ (Jung et al.⁶⁰). On the contrary, some studies reported that the frequency of food insecurity was higher in male participants.^{10,55} Esin and Ayyıldız¹¹ reported that food insecurity was not associated with demographic factors. Inconsistencies across studies may be related to differences in sample characteristics, measurement tools, and cultural norms that influence how individuals experience and report food insecurity. This suggests that sex- and demography-related differences in food insecurity are complex, and highlights the importance of interpreting findings within the socioeconomic and cultural context of the study population.

This study has some limitations. First, the evaluation of all scales is based on self-reporting. Self-reported measures may be affected by recall or social desirability bias. Second, the sample is limited by some demographic characteristics. Although it was aimed to include equal numbers of male and female participants in this study, the majority of the individuals who agreed to participate in the study were female. Third limitation of this study is that the relationship between 4D-FIS scores and BMI was examined only with correlation analysis. Regression models were not employed, which restricts the

evaluation of predictive validity. Additionally, the non-significant relationship may be partly due to the relatively homogeneous BMI distribution in our sample. Future studies should consider applying regression models or other predictive analyses and examine more diverse populations to better assess potential associations. Finally, participation was voluntary within a single university setting, which may limit the representativeness of the broader university student population. It is recommended that the 4D-FIS scale be examined in larger samples, age groups, various disease groups, and different education levels in future studies.

Conclusion

The results of this study showed that the 4D-FIS scale is a valid and reliable tool in Turkish university students. In addition to determining food security at the individual level, this scale has the ability to evaluate it in four different domains: quantitative, qualitative, psychological and social. Therefore, it is considered to be a more comprehensive and effective tool in determining food security. This scale can be used as an effective and reliable measurement tool for the evaluation of food security and related factors in Turkish university students.

Acknowledgements

We thank all participants for their time and contributions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Authorship

Cansu Memiç-İnan and **Büşra Başpinar**: Conceptualization, Methodology, Software, Formal Analysis, Data Curation, Writing – Original Draft, Writing – Review and Editing. **Fatih İmrol**: Methodology, Writing – Original Draft, Writing – Review and Editing.

Data availability statement

Data are available from the corresponding author upon request.

References

1. Food and Agriculture Organization, International Fund for Agricultural Development, UNICEF. The state of food security and nutrition in the world 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. 2023. <https://openknowledge.fao.org/items/445c9d27-b396-4126-96c9-50b335364d01>.
2. Gebrie YF. Bayesian regression model with application to a study of food insecurity in household level: a cross sectional study. *BMC Public Health*. 2021;21(1):1–10. doi: 10.1186/s12889-021-10674-3
3. Food and Agriculture Organization of the United Nations (FAO). Measuring hunger, food security and food consumption: frequently asked questions. <https://www.fao.org/measuring-hunger/access-to-food/frequently-asked-questions/en>. 2025.
4. Samim SA, Hu Z, Stepien S, et al. Food insecurity and related factors among farming families in Takhar region, Afghanistan. *Sustainability*. 2021;13(18):10211. doi: 10.3390/su131810211
5. Schroeder K, Smaldone A. Food insecurity: a concept analysis. *Nurs Forum*. 2015;50(4):274–284. doi: 10.1111/nuf.12118
6. Food and Agriculture Organization of the United Nations (FAO). The state of food security and nutrition in the world 2024: financing to end hunger, food insecurity and malnutrition in all its forms. *Food and Agriculture Organ of the United Nations*. 2024. <https://openknowledge.fao.org/handle/20.500.14283/cd1254en>.
7. Burki T. Food security and nutrition in the world. *Lancet Diabetes Endocrinol*. 2022;10(9):622. doi: 10.1016/S2213-8587(22)00220-0
8. Wolfson JA, Insolera N, Cohen A, Leung CW. The effect of food insecurity during college on graduation and type of degree attained: evidence from a nationally representative longitudinal survey. *Public Health Nutr*. 2022;25(2):389–397. doi: 10.1017/S1368980021003104
9. Wolfson JA, Insolera N, Laska MN, Leung CW. High prevalence of food insecurity and related disparities among US college and university students from 2015–2019. *J Nutr Educ Behav*. 2024;56(1):27–34. doi: 10.1016/j.jneb.2023.10.013
10. Celik OM, Ozyildirim C, Karacil Ermumcu MS. Evaluation of food insecurity and its association with food consumption and some variables among college students. *J Health Popul Nutr*. 2023;42(1):90. doi: 10.1186/s41043-023-00436-9
11. Esin K, Ayyildiz F. Food insecurity, Mediterranean diet adherence, and psychosocial health among university students in Türkiye. *Int J Environ Health Res*. 2024;34(1):649–659. doi: 10.1080/09603123.2023.2300405
12. Wolfson JA, Leung CW. Food insecurity and COVID-19: disparities in early effects for U.S. adults. *Nutrients*. 2020;12(6):1648. doi: 10.3390/nu12061648
13. Clifford D, Anderson J, Auld G, Champ J. Good grubbin': impact of a TV cooking show for college students living off campus. *J Nutr Educ Behav*. 2009;41(3):194–200. doi: 10.1016/j.jneb.2008.01.006
14. Öztürk M, Gür F, Jongerden J. Food insecurity in the age of neoliberalism in Turkey and its neighbors. In: Mayer T, Anderson MD, editors. *Food Insecurity*. Routledge; 2020:77–95.
15. Zarei M. The water-energy-food nexus: a holistic approach for resource security in Iran, Iraq, and Turkey. *Water-Energy Nexus*. 2020;3:81–94. doi: 10.1016/j.wen.2020.05.004
16. Destek MA, Sinha A, Sarkodie SA. The relationship between financial development and income inequality in Turkey. *J Econ Struct*. 2020;9(1):11. doi: 10.1186/s40008-020-0187-6
17. Isik S, Ozbugday F. The impact of agricultural input costs on food prices in Turkey: a case study. *Agric Econ*. 2021;67(3):101–110. doi: 10.17221/260/2020-AGRICECON

18. Gundersen C, Ziliak JP. Food insecurity and health outcomes. *Health Aff.* 2015;34(11):1830–1839. doi: [10.1377/hlthaff.2015.0645](https://doi.org/10.1377/hlthaff.2015.0645)
19. Beyene SD. The impact of food insecurity on health outcomes: empirical evidence from Sub-Saharan African countries. *BMC Public Health.* 2023;23(1):338. doi: [10.1186/s12889-023-15244-3](https://doi.org/10.1186/s12889-023-15244-3)
20. Park S, Chen J, Bustamante AV. Adverse consequences of food insecurity among U.S. adults beyond health outcomes. *Am J Prev Med.* 2024;66(1):146–153. doi: [10.1016/j.amepre.2023.09.003](https://doi.org/10.1016/j.amepre.2023.09.003)
21. Leroy JL, Ruel M, Frongillo EA, Harris J, Ballard TJ. Measuring the food access dimension of food security: a critical review and mapping of indicators. *Food Nutr Bull.* 2015;36(2):167–195. doi: [10.1177/0379572115587274](https://doi.org/10.1177/0379572115587274)
22. Rabbitt MP, Reed-Jones M, Hales LJ, Burke MP. *Household Food Security in the United States in 2023*. Report No. ERR-337. U.S. Department of Agriculture, Economic Research Service; 2024.
23. Johnson CM, Ammerman AS, Adair LS, et al. The four domain food insecurity scale (4D-FIS): development and evaluation of a complementary food insecurity measure. *Transl Behav Med.* 2020;10(6):1255–1265. doi: [10.1093/tbm/ibaal25](https://doi.org/10.1093/tbm/ibaal25)
24. Maynard M, Andrade L, Packull-McCormick S, Perlman CM, Leos-Toro C, Kirkpatrick SI. Food insecurity and mental health among females in high-income countries. *Int J Environ Res Public Health.* 2018;15(7):1424. doi: [10.3390/ijerph15071424](https://doi.org/10.3390/ijerph15071424)
25. Coates J, Frongillo EA, Rogers BL, Webb P, Wilde PE, Houser R. Commonalities in the experience of household food insecurity across cultures: what are measures missing? *J Nutr.* 2006;136(5):1438S–1448S. doi: [10.1093/jn/136.5.1438S](https://doi.org/10.1093/jn/136.5.1438S)
26. Hamelin AM, Beaudry M, Habicht JP. Characterization of household food insecurity in Québec: food and feelings. *Soc Sci Med.* 2002;54(1):119–132. doi: [10.1016/s0277-9536\(01\)00013-2](https://doi.org/10.1016/s0277-9536(01)00013-2)
27. Osborne JW, Costello AB. Sample size and subject to item ratio in principal components analysis. *Pract Assess Res Eval.* 2004;9(1):11. doi: [10.7275/ktzq-jq66](https://doi.org/10.7275/ktzq-jq66)
28. Lee R, Nieman D. *Nutritional Assessment*. 5th ed. McGraw-Hill Companies; 2010.
29. WHO. Obesity and overweight. WHO. 2025. <https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight>.
30. Bickel G, Nord M, Price C, Hamilton W, Cook J. *Guide to Measuring Household Food Security, Revised 2000*. U.S. Department of Agriculture; 2000.
31. Emiral G, Onsuz M, Metintas S. Evaluation of validity-reliability of Turkish version of the household food security survey short form. *J Clin Anal Med.* 2017;8:284–288. doi: [10.4328/JCAM.4993](https://doi.org/10.4328/JCAM.4993)
32. Rubin DB. *Multiple Imputation for Nonresponse in Surveys*. John Wiley & Sons; 1987.
33. Schafer JL, Graham JW. Missing data: Our view of the state of the art. *Psychol Methods.* 2002;7(2):147–177. doi: [10.1037/1082-989X.7.2.147](https://doi.org/10.1037/1082-989X.7.2.147)
34. Enders CK. *Applied Missing Data Analysis*. The Guilford Press; 2010.
35. Brown TA. Confirmatory factor analysis. In: Hoyle R, ed. *Handbook of Structural Equation Modeling*. 2nd ed. Guilford Press; 2023:261–276.
36. Kline RB. *Principles and Practice of Structural Equation Modeling*. 5th ed. Guilford Press; 2023.
37. Muthén L, Muthén B. *Mplus User's Guide*. 8th ed. Muthén & Muthén; 2017.
38. Hu LT, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Struct Equation Modeling: A Multidiscip J.* 1999;6(1):1–55. doi: [10.1080/10705519909540118](https://doi.org/10.1080/10705519909540118)
39. Marsh HW, Hau KT, Wen Z. In search of golden rules: comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu

and Bentler's (1999) findings. *Struct Equation Modeling: A Multidiscip J.* 2004;11(3):320–341. doi: [10.1207/s15328007sem1103_2](https://doi.org/10.1207/s15328007sem1103_2)

40. Schermelleh-Engel K, Moosbrugger H, Muller H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. *Methods Psychol Res Online.* 2003;8(2):23–74.
41. IBM Corp. *IBM SPSS Statistics for Windows, Version 26.0.* IBM Corp.; 2019.
42. R Core Team. R: a language and environment for statistical computing. *R Foundation for Stat Comput.* 2024. <https://www.R-project.org>.
43. Gadermann AM, Guhn M, Zumbo BD. Estimating ordinal reliability for Likert-type and ordinal item response data: a conceptual, empirical, and practical guide. *Practical Assess, Res, and Evaluation.* 2012;17(3):1–13. doi: [10.7275/n560-j767](https://doi.org/10.7275/n560-j767)
44. Nunnally J, Bernstein I. *Psychometric Theory.* McGraw-Hill; 1994.
45. Salvucci S, Walter E, Conley V, Fink S, Saba M. *Measurement Error Studies at the National Center for Education Statistics.* National Center for Education Statistics; 1997.
46. Buyukozturk S. Faktör analizi: temel kavramlar ve ölçek geliştirmede kullanımı. *Kuram ve Uygulamada Egitim Yonetimi.* 2002;32(32):470–483.
47. Acar Y, Karacagil BS, Demirkoparan M, et al. Turkish adaptation, validation and reliability of the US adult food security survey module in university students. *Public Health Nutr.* 2024;27(1):e45. doi: [10.1017/S1368980024000223](https://doi.org/10.1017/S1368980024000223)
48. Furey S, Beacom E. Nutrition measures and limits: the dominance of the USDA's food insecurity and hunger module and its adaptations. In: Caraher M, Coveney J, Chopra M, editors. *Handbook of Food Security and Society.* Edward Elgar Publishing; 2023:84–97.
49. Türk Tabipleri Birliği VI. Ay Deprem Raporu: olağanüstü durumlara dayanıksız birinci basamak sağlık hizmetleri. *Türk Tabipleri Birliği.* 2024. <https://www.ttb.org.tr/165yjyl>.
50. Kent K, Siu YH, Hutchesson M, Collins CE, Charlton KE. Association between food insecurity status, campus food initiative use and diet quality in Australian university students. *Nutr Diet.* 2024;81(2):170–179. doi: [10.1111/1747-0080.12857](https://doi.org/10.1111/1747-0080.12857)
51. Niyaz O. The prevalence of food insecurity among young adults in faculty of agriculture: a cross-sectional case study of Northwest Turkey. *Prog Nutr.* 2020;22(4):e2020079. doi: [10.23751/pn.v22i4.10024](https://doi.org/10.23751/pn.v22i4.10024)
52. Menghi L, Endrizzi I, Ciceri D, Zampini M, Giacalone D, Gasperi F. Validating the Italian version of the adult picky eating questionnaire. *Food Qual Prefer.* 2022;101:104647. doi: [10.1016/j.foodqual.2022.104647](https://doi.org/10.1016/j.foodqual.2022.104647)
53. Ozdengul F, Yargic MP, Solak R, Yaylali O, Kurklu GB. Assessment of orthorexia nervosa via ORTO-R scores of Turkish recreational and competitive athletes and sedentary individuals: a cross-sectional questionnaire study. *Eat Weight Disord.* 2021;26(4):1111–1118. doi: [10.1007/s40519-020-01006-2](https://doi.org/10.1007/s40519-020-01006-2)
54. Espinoza SC, Novoa-Munoz F. Ventajas del alfa ordinal respecto al alfa de Cronbach ilustradas con la encuesta AUDIT-OMS. *Rev Panam Salud Publica.* 2018;42:e65. doi: [10.26633/RPSP.2018.65](https://doi.org/10.26633/RPSP.2018.65)
55. Gallegos D, McKechnie R, McAndrew R, Russell-Bennett R, Smith G. How gender, education and nutrition knowledge contribute to food insecurity among adults in Australia. *Health Soc Care Community.* 2022;30(5):e2724–e2736. doi: [10.1111/hsc.13715](https://doi.org/10.1111/hsc.13715)
56. Yau A, White M, Hammond D, White C, Adams J. Socio-demographic characteristics, diet and health among food insecure UK adults: Cross-sectional analysis of the International Food Policy Study. *Public Health Nutr.* 2020;23(14):2602–2614. doi: [10.1017/S1368980020000087](https://doi.org/10.1017/S1368980020000087)
57. El Zein A, Colby SE, Zhou W, et al. Food insecurity is associated with increased risk of obesity in U.S. college students. *Curr Dev Nutr.* 2020;4(8):120. doi: [10.1093/cdn/nzaa120](https://doi.org/10.1093/cdn/nzaa120)

58. Hernandez DC, Reesor L, Murillo R. Gender disparities in the food insecurity-overweight and food insecurity-obesity paradox among low-income older adults. *J Acad Nutr Diet.* 2017;117(7):1087–1096. doi: [10.1016/j.jand.2017.01.014](https://doi.org/10.1016/j.jand.2017.01.014)
59. Hernandez DC, Reesor LM, Murillo R. Food insecurity and adult overweight/obesity: Gender and race/ethnic disparities. *Appetite.* 2017;117:373–378. doi: [10.1016/j.appet.2017.07.010](https://doi.org/10.1016/j.appet.2017.07.010)
60. Jung NM, de Bairros FS, Pattussi MP, Pauli S, Neutzling MB. Gender differences in the prevalence of household food insecurity: a systematic review and meta-analysis. *Publ Health Nutr.* 2017;20(5):902–916. doi: [10.1017/S1368980016002925](https://doi.org/10.1017/S1368980016002925)