

MEHMET ALIKANDEMIR JAMES C. KAUFMAN

The Kaufman Domains of Creativity Scale: Turkish Validation and Relationship to Academic Major

ABSTRACT

One common self-assessment of creativity is the Kaufman Domains of Creativity Scale (K-DOCS). This article provides support for a Turkish translation of the instrument, offering exploratory and confirmatory factor analysis to determine whether the factors were consistent across cultures. The participants consisted of two groups. The first group consisted of 1,260 undergraduate students (912 females, 348 males) at a public university in Turkey and was utilized for the principal axis factoring analysis. Horn's parallel analysis, a robust statistical technique, was employed to determine the number of factors to be extracted from a scale. The second group consisted of 1,215 participants (885 females and 330 males) who were utilized for confirmatory factor analysis. Results supported a nine-factor solution as a better fit for this sample than the five-solution originally used by Kaufman. Of the original five factors, four factors were divided into two sub-factors, which were distinct although moderately correlated. Finally, we determined the relationship between K-DOCS factors and college major. We also found good evidence for the construct, discriminant, and convergent validity of the scale. Relationships between K-DOCS factors and college major were largely consistent with predictions, providing additional evidence for the construct validity of the scale.

Keywords: creativity, creativity domains, self-assessment, college major.

Self-assessments are not ideal outcome measures of creativity. They depend on a participants' insight, memory, honesty, and general ability to compare themselves to other people. If participants interpret some items in a different way than intended, for example, the responses may be inaccurate (Reynolds & Suzuki, 2012). Such measures are not a good substitute for measures of creative performance (e.g., Pretz & McCollum, 2014); however, they do offer opportunities to learn about people's beliefs, values, and perceptions about their own creativity and the construct itself (Kaufman, 2019). Self-assessments that ask for people's ratings of their own creativity can be used to gauge their accuracy on such estimations (e.g., Silvia, 2008). People who are more proficient at rating their creative strengths and weaknesses may be considered to have higher creative metacognition (Kaufman & Beghetto, 2013; Kaufman, Beghetto & Watson, 2016) and better equipped to develop their creativity.

Although some evaluation-based self-assessments are domain-general (e.g., Furnham, Miller, Batey & Johnson, 2011), many are domain-specific and ask questions about people's creativity in specific areas. One commonly used measure is the Kaufman Domains of Creativity Scale (K-DOCS; Kaufman, 2012), which represents an evolution of several earlier measures of creativity across different domains (e.g., Kaufman, 2006; Kaufman & Baer, 2004; Kaufman, Waterstreet, et al., 2009). The K-DOCS measures self-reported creativity across five domains: Everyday, Scholarly, Performance, Scientific, and Artistic. Everyday taps into interpersonal and intrapersonal creativity, as well as having a general creative lifestyle. Scholarly is related to intellectual and verbal/linguistic creativity. Performance encompasses kinesthetic activities, music, and creative writing. Scientific includes mathematical and mechanical creativity. Artistic creativity includes both art creation and appreciation.

The K-DOCS has demonstrated convergent and discriminant validity (McKay, Karwowski & Kaufman, 2017). It has been translated and used in empirical research in Chinese (Tu & Fan, 2015; Tu, Guo, Hatcher & Kaufman, in press), Czechoslovakian (Plháková, Dostál & Záskodná, 2015), the Hausa, Igbo, and Yoruba indigenous languages of Nigeria (Awofala & Fatade, 2015), and Turkish (Şahin, 2016). Although most of the translations have used the existing five factors without explicitly testing the structure, Şahin (2016) extracted a comparable five factors and provided evidence for this solution.

There were four goals of the present study. First, although the K-DOCS has been translated into Turkish and used in empirical studies (e.g., Şahin, 2016; Şahin & Lee, 2016), the sample was approximately 500 gifted high school students and only 42 of the original 50 items were retained. We wanted to use a larger and slightly older sample to see whetherthere were any differences in factor loadings. Second, our goal was to build off of Sahin's work. His focus was on the construct validity of the scale and conducted exploratory and confirmatory factor analysis In addition to these analyses, we want to also study discriminant and convergent validity of the scale. Our third goal, given that gender differences are a frequently studied area in creativity with often inconsistent results (Abraham, 2016; Baer & Kaufman, 2008), was to explore gender differences on the K-DOCS.

Finally, although the K-DOCS has been validated with other creativity instruments, it has not been examined in conjunction with college major. Our fourth goal was thus to see if the scores on the five K-DOCS factors aligned with relevant majors (which have also been used as a proxy for interests; Gasser, Larson & Borgen, 2007). Specifically, we predicted that students in science (or science education) and math (or math education) would rate themselves higher on the Scientific K-DOCS factor than other majors. We also predicted that students majoring in arts (or arts education) would rate themselves higher on the Artistic and Performance K-DOCS factors than other majors. We lastly predicted that students in humanities (or humanities education) would rate themselves higher on the Scholarly K-DOCS factors than other majors.

METHOD PARTICIPANTS

The participants consisted of two groups. The first group consisted of 1,260 undergraduate students (912 females, 348 males) at a public university in Turkey. Of this sample, 853 students were studying in several majors in the faculty of education while 407 students with different majors who were taking education classes with the goal of becoming teachers. This first group of students was utilized only for the exploratory factor analysis with the aim of examining data pattern in the participants' responses and factor structure of the scale.

Like the first group, the second group of participants was undergraduate students in the same university. There were 1,215 participants (885 females and 330 males), which included 847 students directly in the school of education. In addition, as with the first group, this sample included 368 students with different majors who were taking education classes with the goal of becoming teachers. This second group of students was used to provide evidence for the construct, discriminant and convergent validity of the scale.

INSTRUMENT

The Kaufman Domains of Creativity Scale (K-DOCS; Kaufman, 2012) was employed in the current study to measure participants' creativity in five broad domains: Everyday (11 items), Scholarly (11 items), Performance (10 items), Scientific (9 items), and Artistic (9 items). Sample items included: "Writing a poem" (Performance), "Writing a computer program" (Scientific), "Writing a letter to the editor" (Scholarly), "Teaching someone how to do something" (Everyday), "Appreciating a beautiful painting" (Artistic). The participants were asked to compare themselves with other people of about their age and life experiences. They then indicated the degree to which they think are creative for each item on a 5-point Likert scale ranging from 1 (much less creative) to 5 (much more creative).

This scale was translated into Turkish by one of the researchers of the current study. Then, two Turkish-speaking experts in creativity examined the scale to establish its face validity. Based on their suggestions, three items were slightly re-worded for purposes of clarity. The final scale initially was administered to 30 students. All the students indicated that the scale items were understandable and clear to them.

DATA ANALYSIS

Principal axis factoring with varimax rotation (Osborne, Costello & Kellow, 2008) was performed on the first group of participants to examine patterns in the data set. We used Horn's parallel analysis (Horn, 1965) to extract the number of factors. After that, items with factor loadings of less than .32 (Tabachnick & Fidell, 2007) in their respective factor were excluded from the final scale. With the remaining items, confirmatory factor analysis was carried to test the factor structure of the scale. A number of indices including chi-square/df test, comparative fit index (CFI), and root mean square error of approximation (RMSEA) were employed to assess the model fit.

In order to explore whether test items and factorial structure of the research instrument are equivalent across gender, a multi-group factor analysis was conducted on the second group of participants. Models

which test the relationships between observed variables and latent variables are measurement invariance tests. Three common models are unconstrained model (configural invariance), measurement weights model (metric invariance), and measurement intercepts model (scalar invariance). Configural invariance deals with whether the same confirmatory factor analysis is valid for each group and is examined by performing individual CFAs for each group. Metric invariance tests whether each group gives responses to the test items in the same manner. It is performed through constraining all factor loadings to be equal across groups. Scalar invariance deals with the degree to which observed scores are related to the latent scores. This is performed through constraining the intercepts of items in addition to factor loadings to be equal across groups (Milfont & Fischer, 2010).

In addition to examining factorial structure of the scale through PCA and CFA, its convergent and discriminant validity were examined by calculating the average variance extracted (AVE) for each dimension of the scale. AVE should be higher than 0.40 to establish the convergent value. In order to establish discriminant validity, the square root of AVE should be higher than inter-construct correlations (Nevitt & Hancock, 2001). The Cronbach's Alpha values were employed to determine the internal consistency.

After establishing the validity of the scale, descriptive statistics were calculated for each of its dimensions. In order to give more evidence for the construct validity of the scale, scores of participants in each major was calculated. In this analysis, a number of predictions were made. For example, it was predicted that artistic creativity scores of participants enrolled in music education and arts education majors would be higher than the students in other majors.

In order to make a statistical comparison among majors, we classified majors into six major clusters: Primary/Secondary Education, Humanities/Humanities Education, Social Science/Social Science Education, Science/Science Education, Math/Math Education, and Arts/Arts Education. Then, we conducted ANOVA tests to determine the differences among these clusters in each factor of the research instrument. We again made a number of predictions. For example, we estimated that the students in the math and science major clusters had higher scores than students in other major clusters in the scientific factor of the scale. We also conducted two-way ANOVA test to identify difference among major clusters after controlling for the effects of gender.

RESULTS

Principal axis factoring resulted in 12 factors with eigenvalues more than 1. Nevertheless, as shown in Table 1, 95th percentile value of 1.22 was higher than the raw data (eigenvalue) of 1.96 in the 10th factor. Thus, Horn's parallel analysis suggested 9 factors.

Factor loadings in the principal axis factoring with 9-factor solution are presented in Table 2. Three items written in italic had either low factor loadings or cross-loadings. Thus, they were removed from further analysis, resulting in a final scale with 47 items.

As expected, all of the items in the scholarly creativity loaded on the same factor. However, items in the other dimensions of creativity loaded on two factors. For example, seven of the self everyday creativity items loaded on factor 4 (which we called *Everyday-Interpersonal*) three on factor 8 (which we called *Everyday-Interpersonal*). The names of the new factors were presented in Table 3.

TABLE 1.	Results	of Parallel	Analysis

	P. 14 (F: 1)	R	andom data
Root	Raw data (Eigen value)	Mean	95th percentile
1	9.51	1.41	1.45
2	3.90	1.37	1.40
3	3.42	1.34	1.37
4	2.44	1.32	1.34
5	1.99	1.29	1.32
6	1.56	1.27	1.29
7	1.44	1.25	1.27
8	1.27	1.24	1.25
9	1.24	1.22	1.23
10	1.06	1.20	1.22

TABLE 2. Results of Exploratory Factor Analysis

					Factor				
	1	2	3	4	5	6	7	8	9
SE1 Finding something fun to do when I have no money	.058	.080	.054	.194	.058	.096	.142	.118	.052
SE2 Helping other people cope with a difficult situation	.057	.107	.055	.484	008	.087	.018	.090	019
SE3 Teaching someone how to do something	.012	.155	.053	.442	028	.108	.045	.092	.029
SE4 Maintaining a good balance between my work and my personal life	.057	.119	025	.214	.040	.084	007	.412	.042
SE5 Understanding how to make myself happy	017	.023	023	.114	.069	.072	.042	.645	.005
SE6 Being able to work through my personal problems in a healthy way	.083	.114	.002	.195	004	017	.033	.746	.030
SE7 Thinking of new ways to help people	.116	.183	.060	.486	.025	.029	.011	.157	.019
SE8 Choosing the best solution to a problem	.098	.241	.043	.370	.006	005	.005	.288	.122
SE9 Planning a trip or event with friends that meets everyone's needs	.070	.159	.011	.412	.175	.065	.075	.075	.012
SE10 Mediating a dispute or argument between two friends	007	.107	.023	.598	.135	.033	.033	042	032
SE11 Getting people to feel relaxed and at ease	030	.119	.036	.606	.086	.108	.082	.077	.013
S1 Writing a non-fiction article for a newspaper, newsletter, or magazine	.141	.669	.187	.021	.150	055	.102	.017	102
S2 Writing a letter to the editor	.115	.691	.150	.042	.216	033	.085	.029	090
S3 Researching a topic using many different types of sources that may not be readily apparent	.104	.562	.002	.175	.030	.086	.128	.086	.019
S4 Debating a controversial topic from my own perspective	.040	.456	.050	.344	004	.092	.107	.099	006
S5 Responding to an issue in a context-appropriate way	.003	.425	.046	.408	004	.096	.016	.102	.058
S6 Gathering the best possible assortment of articles or papers to support a specific point of view	.042	.547	.080	.203	.017	.119	.049	.033	.025
S7 Arguing a side in a debate that I do not personally agree with	.093	.255	.044	.171	.100	026	.015	085	.005
S8 Analyzing the themes in a good book	.015	.545	.027	.243	.004	.163	.030	.050	.035
S9 Figuring out how to integrate critiques and suggestions while revising a work	.016	.492	.076	.263	052	.225	.037	.123	.106

TABLE 2 (Continued)

					Factor				
	1	2	3	4	5	6	7	8	9
S10 Being able to offer	.040	.447	.077	.292	023	.199	.004	.146	.116
constructive feedback based on									
my own reading of a paper									
S11 Coming up with a new way	.048	.323	.105	.282	024	.099	.058	.107	.060
to think about an old debate									
P1 Writing a poem	.066	.209	.715	.071	.058	.065	.050	044	.003
P2 Making up lyrics to a funny	.071	.074	.796	.071	.245	.107	.089	.003	018
song									
P3 Making up rhymes	031	.097	.763	.118	.138	.122	.090	005	.044
P4 Composing an original song	.144	.117	.722	.081	.274	.044	.065	.022	040
P5 Learning how to play a musical instrument	.112	.007	.161	.040	.671	.142	.072	.025	.038
P6 Shooting a fun video to air on YouTube	.147	.059	.275	.105	.478	.123	.060	.000	007
P7 Singing in harmony	072	.012	.303	.155	.453	.166	.034	.053	.080
P8 Spontaneously creating lyrics	.237	.069	.501	.002	.361	024	.055	022	054
to a rap song									
P9 Playing music in public	.163	.094	.132	.002	.772	.069	.055	.031	.044
P10 Acting in a play	.122	.153	.225	.150	.454	.121	.109	.077	.002
MS1 Carving something out of wood or similar material	.391	.117	.080	.030	.197	.122	.334	.042	008
MS2 Figuring out how to fix a	.632	.031	.080	.097	.065	.047	.018	.026	005
frozen or buggy computer									
MS3 Writing a computer	.664	.089	.155	039	.107	033	.008	.061	.070
program									
MS4 Solving math puzzles	.400	021	.021	.041	.041	002	.129	.083	.708
MS5 Taking apart machines and	.754	.036	.001	.092	.007	.020	.114	.017	.158
figuring out how they work									
MS6 Building something	.777	.112	.072	.035	.139	024	.129	.006	.123
mechanical (like a robot)									
MS7 Helping to carry out or	.504	.222	034	.113	.116	.062	.182	.031	.325
design a scientific experiment	44.4	0.4.4	056	0.40	004	020	124	050	
MS8 Solving an algebraic or	.414	.044	056	.040	.084	020	.124	.058	.661
geometric proof	510	150	061	000	070	001	452	062	1.62
MS9 Constructing something out	.513	.150	.061	.098	.070	.081	.453	.062	.163
of metal, stone, or similar									
material	247	162	224	057	125	122	651	003	017
A1 Drawing a picture of	.247	.163	.224	.057	.125	.132	.651	.003	.017
something I've never actually seen (like an alien)									
A2 Sketching a person or object	.147	.150	.093	.100	.083	.212	.714	.014	.027
A3 Doodling/Drawing random	.021	.023	001	.134	007	.259	.569	.014	.276
or geometric designs	.021	.023	001	.134	007	.239	.509	.010	.270
A4 Making a scrapbook page out	162	.027	.018	.209	.085	.538	.137	.045	.158
of my photographs	.102	.027	.010	.207	.003	.550	.137	.013	.130
A5 Taking a well-composed	.080	.052	.113	.199	.148	.531	.140	.099	.080
photograph using an interesting	.000	.032	.113	.177	.1 10	.551	.110	.077	.000
angle or approach									
	.263	.089	.076	.074	.148	206	.408	062	074
A6 Making a sculpture or piece	.20.7	.007	.070	.()/4	.140	.386	.400	.063	-,074

TABLE 2 (Continued)

					Factor				
	1	2	3	4	5	6	7	8	9
A7 Appreciating a beautiful painting	052	.072	.026	.154	.022	.554	.166	014	.031
A8 Coming up with my own interpretation of a classic work of art	.167	.198	.203	.028	.158	.526	.084	.026	130
A9 Enjoying an art museum	.087	.238	.053	.017	.177	.612	.099	.058	146

Notes. Factor 1: Mechanical/Scientific; Factor 2: Scholarly; Factor 3: Performance-Literary. Factor 4: Every-day/Interpersonal; Factor 5: Performance-Music; Factor 6: Artistic-Drawing. Factor 7: Artistic-Activity; Factor 8: Everyday/Intrapersonal; Factor 9: Mathematics. Factor loadings above .35 are presented in bold.

Correlations among variables are presented in Table 4. We hypothesized that the highest correlations would be the sub-dimensions of the originally proposed 5 factors (e.g., Artistic-Drawing and Artistic-Activity). Except for the relationship between Everyday-Interpersonal and Everyday-Intrapersonal (r=.33, p<.05), our hypothesis was supported. For example, Mathematical variable was found to yield a higher correlation with the mechanical/scientific variable (r=.54, p<.01) than did the other variables. Similar findings were found for Performance (Literary and Music) and Artistic (Drawing and Activity) pairs. Unexpectedly, Everyday-Interpersonal and Everyday-Intrapersonal variables were found to have a higher correlation with the Scholarly factor than between themselves.

Although parallel analysis suggested a 9-factor solution, correlation analysis showed that the sub-dimensions of the originally proposed 5 factors are closely related. Thus, we examined the discriminant validity of 9 dimensions. Average Variance Extracted (AVE) values were calculated. The square root of AVE is presented in the diagonal of Table 2. In order to establish discriminant validity, this value should be higher than inter-construct correlations (Nevitt & Hancock, 2001). All of the AVE values were found to be higher than inter-construct correlations, suggesting that these nine dimensions were distinct. In addition, since all of the AVE values were found to be more than .40, we were able to establish the convergent validity of each dimension.

Based on all of the analyses carried out so far revealed that the scale consisted of distinct but related 9 dimensions. Thus, we decided to test the 9-factor model as well as 5-factor model in the confirmatory factor analysis. The fit indices for the hypothesized nine-factor model with 47 items for the full-sample data were as follows: CFI = .80, RMSEA = .057, and $\chi^2/df = 5.12$. Among these indices the RMSEA value indicated a very good fit. χ^2/df value were very close to the threshold value of 5. Nevertheless, CFI value was relatively far from the threshold value of .90. Table 5 shows fit indices values for both five-factor model and nine-factor model. It suggested that 9-factor model provided a better fit with the data.

We also calculated the Raykov's reliability scores (composite reliability) to provide evidence for the reliability of the 9-dimension scale. Composite 'reliability scores were found to be 75 for Everyday-Interpersonal,

TABLE 3. Dimensions of the Scale

Factors	Number of items	Mean (SD)	Cronbach's alpha
Everyday-Interpersonal	7	3.71 (.59)	.73
Everyday-Intrapersonal	3	3.67 (.80)	.66
Scholarly	9	3.10 (.68)	.84
Performance-Literary	5	2.50 (1.06)	.87
Performance-Music	5	2.77 (.95)	.77
Mechanical/Scientific	7	2.42 (.90)	.84
Mathematical	2	2.78 (1.28)	.83
Artistic-Drawing	5	3.62 (.82)	.74
Artistic-Activity	4	3.00 (.66)	.76

TABLE 4. Correlations among Variables

Variable	1	2	3	4	5	6	7	8	9
1. Everyday (Everyday-Interpersonal)	(.50)								
2. Everyday (Everyday-Intrapersonal)	.33**	(.53)							
3. Scholarly	.49**	.27**	(.55)						
4. Performance (Performance-Literary)	.20**	.03	.30**	(.70)					
5. Performance (<i>Performance-Music</i>)	.24**	.13**	.27**	.52**	(.58)				
6. Mechanical/Scientific (Mechanical/Scientific)	.20**	.14**	.29**	.25**	.32**	(.55)			
7. Mechanical/Scientific (Mathematical)	.13**	.13**	.09**	.05	.14**	.54**	(.59)		
8. Artistic (Artistic-Drawing)	.30**	.18**	.36**	.26**	.36**	.18**	.04	(.53)	
9. Artistic (Artistic-Activity)	.23**	.14**	.33**	.29**	.33**	.44**	.27**	.48**	(.68)

^{**}p < .01.

70 for Everyday-Intrapersonal, 86 for Scholarly, 90 for Performance-Literary, 80 for Performance-Music, 86 for Mechanical/Scientific, 82 for Mathematical, 80 for Artistic-Drawing, and 79 for Artistic-Activity. These findings showed the overall consistency of the scale.

Table 6 shows fit indices values for three invariance types. No substantial difference was found in χ^2/df and RMSEA indices among the three models. In addition, CFI values for unconstrained model and measurement weights model were close, which suggested that males and females respond to the scale items in the same manner. However, CFI difference between the metric invariance and scalar invariance was more than .01, which prevented cross-gender comparison of scores. Thus, we did not compare creativity scores of males and females separately.

In order to compare the participants' scores from different majors (except for physical education), we clustered 21 majors into six larger major clusters: Primary/Secondary Education, Humanities/Humanities Education, Social Science/Social Science Education, Science/Science Education, Math/Math Education and Arts/Arts Education. Table 7 shows the number of students in each major by gender. Math major cluster had the highest number of students.

Then, we compared the scores in major clusters after controlling for the effects of gender. To do so, we conducted two-way ANOVA test for each factor in which gender served as a control variable (See Table 8). Consistent with our predictions, no significant difference existed among majors in Everyday-Interpersonal, Everyday-Intrapersonal and Scholarly factors. As expected, students majoring in the arts received higher scores than the other students on the Performance-Literary, Performance-Music, Artistic-Drawing, and Artistic-Activity factors. Moreover, students majoring in mathematics received statistically higher scores than the other students in Mechanical/Scientific and Mathematics factors.

DISCUSSION

The main purpose of the current study was to examine the validity and reliability of the Kaufman Domains of Creativity Scale (K-DOCS) with a Turkish sample. In contrast to our predictions, exploratory factor analysis supported a 9-factor solution. Although some indices did not fully support the model's fit in confirmatory factor analysis, items seemed to have high factor loadings in their respective factor. In addition, we were able to provide good evidence for the discriminant and convergent validity of the scale. Furthermore, the results of multi-group invariance analysis supported measurement invariance across gender. Most importantly, in comparing K-DOCS scores across different majors, we found a general pattern than

TABLE 5. Fit Indices Values for Two Models

Model	CFI	RMSEA	χ²/df
Five-factor Model	.70	.069	7.04
Nine-factor Model	.80	.057	5.12

TABLE 6.	Fit Indices of	Three Nested	Models of	f Multi-group	Confirmatory	Factor Analysis
----------	----------------	--------------	-----------	---------------	--------------	-----------------

Model (Invariance Type)	χ^2/df	RMSEA (90% CI)	CFI
Unconstrained Model (Configural Invariance)	3.186	.042 (.041044)	.790
Measurement Weights Model (Metric Invariance)	3.147	.042 (.041043)	.790
Measurement Intercepts Model (Scalar Invariance)	3.262	.043 (.042–.044)	.773

supports the construct validity of our scale. Based on these findings, we believe that the Turkish scale can be used to measure self-reported creativity across different domains in Turkish-speaking populations.

To begin with, unlike other studies which supported 5-factor solution (Kaufman, 2012; Şahin, 2016) the results of the exploratory factor analysis supported the 9-factor solution. However, our result is consistent with other studies which supported three (Kaufman & Baer, 2004), four (Kaufman, Waterstreet, et al., 2009) and seven (Kaufman, Cole & Baer, 2009) factors of creativity.

It is important to note that other studies relied on a scree plot and eigenvalues to extract the number of factors. Here, we used a robust and advance statistical analysis technique, Horn's parallel analysis, which resulted in 9-the factor solution. It is important to note that a 5-factor solution mirroring the original K-DOCS was found; however, the 9-factor model provided a better fit to the data in the confirmatory factor analysis. Our results do not mean that the originally 5-factor model is incorrect or a poor interpretation. Rather, it shows that 4 of the 5 factors may have two related but distinct sub-dimensions.

The predicted associations between college major and scores on K-DOCS factors were partially found. Both science and math majors rated themselves higher on the Mechanical/Scientific and Mathematics factors and the arts majors rated themselves on Performance-Literary, Performance-Music, Artistic-Drawing, and

TABLE 7. The Number of Students by Gender in Each Major and Major Cluster

Major cluster	Major	Female	Male	Total
Primary/Secondary Ed	Primary School Ed	71	17	88
	Early Childhood Ed	115	6	121
	Total	186	23	209
Humanities/Humanities Ed	English Language Teaching	1	4	5
	History	58	31	89
	Geography	12	14	26
	Turkish Language Teaching	75	45	120
	Total	146	94	240
Social Science/Social Science Ed	Social Science Education	37	27	64
	Counseling	17	5	22
	Sociology	13	1	14
	Nursing	5	1	6
	Total	72	34	106
Science/Science Ed	Computer Education	26	20	46
	Science Education	49	4	53
	Biology	73	14	87
	Chemistry	26	5	31
	Physics	2	3	5
	Total	176	46	222
Math/Math Ed	Secondary Math Education	27	12	39
	Primary Math Education	112	35	147
	Mathematics	68	42	110
	Total	207	89	296
Arts/Arts Ed	Music Education	16	17	33
	Arts Education	5	0	5
	Turkish Linguistics and Literature	74	20	94
	Total	95	37	132

TABLE 8. Differences by Major Cluster Using Mean Factor Scores

Factor	Pr/Sec education	Humanities	Social science	Science	Math	Arts
Everyday-Interpersonal	3.72 (.59)	3.73 (.57)	3.67 (.70)	3.82 (.58) ^e	3.66 (.60)	4.00 (.44)
Everyday-Intrapersonal	3.58 (.65)	3.64 (.59)	3.66 (.61)	3.78 (.55)	3.68 (.58)	3.68 (.61)
Scholarly	3.01 (.88)	3.25 (.80)	3.23 (.70)	3.15 (.68)	3.00 (.88)	3.26 (.78)
Performance-Literary	2.65 (1.04)	2.65 (.99)		2.48 (1.03)	2.39 (1.03)	$3.25 (.88)^{a,b,c,d,e}$
Performance-Music	2.80 (1.02)	2.67 (.97)	2.75 (.99)	2.87 (.99)	2.68 (1.01)	$3.96 (.40)^{a,b,c,d,e}$
Mechanical/Scientific	2.25 (.99)	2.16 (1.05)	2.22 (.97)	$2.74 (.98)^{a,b,c,f}$	$2.70 (.99)^{a,b,c,f}$	2.30 (1.14)
Mathematics	$2.71 (.97)^{b,c,f}$	1.93 (1.12)	2.16 (.95)	$3.14 (.79)^{a,b,c,f}$	3.84 (.98) ^{a,b,c,d,f}	2.05 (1.22)
Artistic-Drawing	3.61 (.60)	3.62 (.57)	3.65 (.52)	3.60 (.64)	3.41 (.57)	$4.04 (.49)^{a,b,c,d,e}$
Artistic-Activity	3.11 (.62)	2.76 (.98)	2.80 (.89)	3.15 (.66)	3.14 (.78)	3.63 (.49) ^{a,b,c,d,e}

^aThe mean difference is higher than Education at the 0.01 level. ^bThe mean difference is higher than Humanities at the 0.01 level. ^cThe mean difference is higher than Social Science at the 0.01 level. ^dThe mean difference is higher than Science at the 0.01 level. ^eThe mean difference is higher than Math at the 0.01 level. ^fThe mean difference is higher than Arts at the 0.01 level. Artistic-Activity factors. Additional, unpredicted associations were also found. Primary/secondary education majors rated themselves higher than non-science/math majors on Mathematics, and science majors rated themselves higher than science majors on Everyday-Interpersonal (which may be more of a comment on how math students perceive their creative in other domains).

LIMITATIONS AND FUTURE DIRECTIONS

The findings regarding the relationship between majors and scales scores should be interpreted with caution. There could easily be a reciprocal relationship between major choice and perceived creative ability. Some students might major in the arts because they see themselves as more creative in that area; others might major in the arts and thereby participate in many artistic activities and come to see themselves as more creative. In addition, of course, students may have wildly inaccurate views of their own creativity (Kaufman & Beghetto, 2013) or a poor understanding of the construct of creativity itself (Baas, Koch, Nijstad & De Dreu, 2015). Further, unlike many other self-report instruments (see Kaufman, 2019), the K-DOCS does not ask for frequency of participation in these creative activities or attempt to provide an objective framework for responses. Some participants may report higher scores because of self-driven or narcissistic reasons (Goncalo, Flynn & Kim, 2010); others may be responding based on social desirability.

Further, a large percentage of the population were education students. Although this sampling is interesting because of the insights it yields for future teachers, it may also have potentially skewed the results. Given that students majoring solely in education did not vary greatly across the different factors of the K-DOCS from those students majoring in a domain of education (i.e., arts education) or a non-education major, these concerns may be muted. However, a study with a larger distribution of majors that better distinguishes between subjects (i.e., not needing to include arts education majors along with arts majors; see Kaufman, Pumaccahua & Holt, 2013), would be a natural next step. It is also important to note that back-translation process was not implemented, which was one of the main limitations of our study. In addition, the sample was predominantly female and derived from a single university.

Additional work—both on the K-DOCS and on self-report measures of creativity in general – is needed. Notably, no objective measure of creativity was included in this study. Although other studies (e.g., McKay et al., 2017) have validated the K-DOCS with measures that were not self-report, more evidence is needed (particularly for the Turkish version). Ideally, a future study might examine the K-DOCS and college major along with objective, domain-specific measures of creativity, such as the actual creation of products to be rated by experts (e.g., Amabile, 1996). In addition to offering better evidence of the validity of the K-DOCS (or, perhaps, of the absence of such validity), such a study could examine the accuracy of self-ratings across different majors and content areas.

It is also important to reiterate that the K-DOCS is not designed to be a proxy measure of objective creativity. It offers insight into how people view their own creativity and, likely, how much they value it. It helps assess people's accuracy in their opinions about their creativity. But it is not specifically designed to replace an objective measure (Kaufman, 2019).

CONCLUSIONS

With these caveats, we believe that the Turkish K-DOCS does show support for the five-factor solution of the original K-DOCS (Kaufman, 2012). Further, it demonstrates evidence of discriminant, construct, and (limited) convergent validity. In addition, and more intriguingly, it suggests that a 9-factor solution may an even better fit. Given that several past investigations have primarily found the 5-factor solution (or a variant thereof), it is premature to assume that the 9-factor solution is generalizable or the best way to interpret the scale. However, it raises possibilities for future work. It is possible that a future revised and updated scale may expand to reflect more categories of domains, and the model presented in this paper may be a solid starting point.

REFERENCES

Abraham, A. (2016). Gender and creativity: An overview of psychological and neuroscientific literature. *Brain Imaging and Behavior*, 10, 609–618.

Amabile, T.M. (1996). Creativity in context: Update to "The Social Psychology of Creativity". Boulder, CO: Westview Press.

Awofala, A.O., & Fatade, A.O. (2015). Validación de una escala sobre dominios de creatividad para futuros profesores deficiencias naturales, tecnología y matemáticas. Electronic Journal of Research in Educational Psychology, 13, 131–150.

- Baas, M., Koch, S., Nijstad, B.A., & De Dreu, C.W. (2015). Conceiving creativity: The nature and consequences of laypeople's beliefs about the realization of creativity. *Psychology of Aesthetics, Creativity, and the Arts, 9*, 340–354.
- Baer, J., & Kaufman, J.C. (2008). Gender differences in creativity. Journal of Creative Behavior, 42, 75-106.
- Furnham, A., Miller, T., Batey, M., & Johnson, S. (2011). Demographic and individual correlates of self-rated competency. *Imagination, Cognition and Personality*, 31, 247–265.
- Gasser, C.E., Larson, L.M., & Borgen, F.H. (2007). Concurrent validity of the 2005 Strong Interest Inventory: An examination of gender and major field of study. *Journal of Career Assessment*, 15, 23–43.
- Goncalo, J.A., Flynn, F.J., & Kim, S.H. (2010). Are two narcissists better than one? The link between narcissism, perceived creativity, and creative performance. *Personality and Social Psychology Bulletin*, 36, 1484–1495.
- Horn, J.L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrica, 30, 179-185.
- Kaufman, J.C. (2006). Self-reported differences in creativity by gender and ethnicity. Journal of Applied Cognitive Psychology, 20, 1065–1082.
- Kaufman, J.C. (2012). Counting the muses: Development of the Kaufman-Domains of Creativity Scale (K-DOCS). Psychology of Aesthetics, Creativity, and the Arts, 6, 298–308.
- Kaufman, J.C. (2019). Self assessments of creativity: Not ideal, but better than you think. Psychology of Aesthetics, Creativity, and the Arts, 13, 187–192.
- Kaufman, J.C., & Baer, J. (2004). Sure, I'm creative but not in mathematics!: Self-reported creativity in diverse domains. *Empirical Studies of the Arts*, 22, 143–155.
- Kaufman, J.C., & Beghetto, R.A. (2013). In praise of Clark Kent: Creative metacognition and the importance of teaching kids when (not) to be creative. *Roeper Review*, 35, 155–165.
- Kaufman, J.C., Beghetto, R.A., & Watson, C. (2016). Creative metacognition and self-ratings of creative performance: A 4-C perspective. Learning and Individual Differences, 51, 394–399.
- Kaufman, J.C., Cole, J.C., & Baer, J. (2009). The construct of creativity: A structural model for self-reported creativity ratings. *Journal of Creative Behavior*, 43, 119–134.
- Kaufman, J.C., Pumaccahua, T.T., & Holt, R.E. (2013). Personality and creativity in realistic, investigative, artistic, social, and enterprising college majors. Personality and Individual Differences, 54, 913–917.
- Kaufman, J.C., Waterstreet, M.A., Ailabouni, H.S., Whitcomb, H.J., Roe, A.K., & Riggs, M. (2009). Personality and self-perceptions of creativity across domains. *Imagination, Cognition, and Personality*, 29, 193–209.
- McKay, A.S., Karwowski, M., & Kaufman, J.C. (2017). Measuring the muses: Validating the Kaufman Domains of Creativity Scale (K-DOCS). Psychology of Aesthetics, Creativity, and the Arts, 11, 216–230.
- Milfont, T.L., & Fischer, R. (2010). Testing measurement invariance across groups: Applications in cross-cultural research. *International Journal of psychological research*, 3, 111–130.
- Nevitt, J., & Hancock, G.R. (2001). Performance of bootstrapping approaches to model test statistics and parameter standard error estimation in structural equation modeling. Structural Equation Modeling, 8, 353–377.
- Osborne, J.W., Costello, A.B., & Kellow, J.T. (2008). Best practices in exploratory factor analysis. In J.W. Osborne (Ed.), Best Practices in Quantitative Methods (pp. 86–99). Thousand Oaks, CA: Sage.
- Plháková, A., Dostál, D., & Záskodná, T. (2015). Hollandova typologie profesnich zajmu ve vztahu k domenove specificke kreativite/Holland's typology of vocational interests in relation to domain-specific creativity. *Ceskoslovenska Psychologie*, 59, 17–56.
- Pretz, J.E., & McCollum, V.A. (2014). Self-perceptions of creativity do not always reflect actual creative performance. Psychology of Aesthetics, Creativity, and the Arts, 8, 227–236.
- Reynolds, C.R., & Suzuki, L.A. (2012). Bias in psychological assessment: An empirical review and recommendations. In I.B. Weiner, J.R. Graham & J.A. Naglieri (Eds.), *Handbook of psychology: Assessment psychology* (2nd edn, pp. 82–113). New York: Wiley.
- Şahin, F. (2016). Kaufman Alanları Yaratıcılık Ölçeği'nin Türkçeye uyarlanması ve psikometrik özelliklerinin incelenmesi/Adaptation of the Kaufman Domains of Creativity Scale into Turkish and examination of its psychometric properties. İlköğretim Online, 15, 855–867.
- Şahin, F., & Lee, J. (2016). General intelligence, emotional intelligence and academic knowledge as predictors of creativity domains: A study of gifted students. *Cogent Education*, *3*, Article 1218315.
- Silvia, P.J. (2008). Discernment and creativity: How well can people identify their most creative ideas? Psychology of Aesthetics, Creativity, and the Arts, 2, 139–146.
- Tabachnick, B.G., & Fidell, L.S. (2007). Using multivariate statistics (5th edn). Boston: Allyn & Bacon.
- Tu, C., & Fan, F. (2015). Domain specificity of creativity: Conception and measurement. Advances in Psychology, 11, 648-656.
- Tu, C., Guo, J., Hatcher, R.C., & Kaufman, J.C. (in press). The relationship between emotional intelligence and domain-specific and domain-general creativity. *Journal of Creative Behavior*.

Mehmet Ali Kandemir, Balikesir University

James C. Kaufman, University of Connecticut

Correspondence concerning this article should be addressed to James C. Kaufman, Neag School of Education, University of Connecticut, 2131 Hillside Road, Unit 3007, Storrs, CT 06269-3007. E-mail: james.kaufman@uconn.edu