
	

	

	

Kış 2017 
Cilt 7 

Sayı 1 

Winter 2017 
Volume 7 

Issue 1 

ISSN:	2147-1908	



	

	

	
EĞİTİM	TEKNOLOJİSİ	KURAM	VE	UYGULAMA		/	EDUCATIONAL	TECHNOLOGY	THEORY	AND	PRACTICE	

	
Cilt	7,	Sayı	1,	Kış	2017	

Volume	7,	Issue	1,	Winter	2017	
	

Genel	Yayın	Editörü	/	Editor-in-Chief:	Dr.	Halil	İbrahim	YALIN	
Yardımcı	Editör	/	Co-Editor:	Dr.	Tolga	GÜYER	

	
Sorumlu	Yazı	İşleri	Müdürü	/	Publisher	Editor:	Dr.	Sami	ŞAHİN	

Redaksiyon	/	Redaction:	Dr.	Tolga	GÜYER	
Dizgi	/	Typographic:	Dr.	Tolga	GÜYER	

Sayfa	Tasarımı	/	Page	Design:	Dr.	Tolga	GÜYER	
Kapak	Tasarımı	/	Cover	Design:	Dr.	Bilal	ATASOY	

İletişim	/	Contact	Person:	Dr.	Aslıhan	KOCAMAN	KAROĞLU	
	

Dizinlenmektedir	/	Indexed	in:	ULAKBİM	Sosyal	ve	Beşeri	Bilimler	Veritabanı,	Türk	Eğitim	İndeksi,	ASOS	Sosyal	Bilimler	İndeksi	

	
	

Editör	Kurulu	/	Editorial	Board*	

Dr.	Abdullah	Kuzu	 		
Dr.	Akif	Ergin	 		
Dr.	Ana	Paula	Correıa		
Dr.	Aytekin	İşman	 		
Dr.	Buket	Akkoyunlu		
Dr.	Cem	Çuhadar	 		
Dr.	Deniz	Deryakulu		
Dr.	Deepak	Subramony	

Dr.	Eralp	H.	Altun		
Dr.	Feza	Orhan	 		
Dr.	H.	Ferhan	Odabaşı		
Dr.	Hafize	Keser	 		
Dr.	Halil	İbrahim	Yalın		
Dr.	Hyo-Jeong	So		 		
Dr.	İbrahim	Gökdaş		 		
Dr.	Kyong	Jee(Kj)	Kim	

Dr.	M.	Oğuz	Kutlu		
Dr.	M.	Yaşar	Özden		
Dr.	Mehmet	Gürol	
Dr.	Michael	Evans		
Dr.	Michael	Thomas		
Dr.	Özcan	Erkan	Akgün	
Dr.	Özgen	Korkmaz	
Dr.	S.	Sadi	Seferoğlu	

Dr.	Sandie	Waters		
Dr.	Scott	Warren		
Dr.	Servet	Bayram	
Dr.	Şirin	Karadeniz	
Dr.	Tolga	Güyer		
Dr.	Trena	Paulus		
Dr.	Yasemin	Gülbahar	Güven	
Dr.	Yavuz	Akpınar	
Dr.	Yun-Jo	An	

*	Liste	isme	göre	alfabetik	olarak	oluşturulmuştur.	/	List	is	created	in	alphabetical	order	
	

Hakem	Kurulu	/	Reviewers*	

Dr.	Adile	Aşkım	Kurt				
Dr.	Agah	Tuğrul	Korucu	
Dr.	Arif	Altun				
Dr.	Aslıhan	Kocaman	Karoğlu	
Dr.	Ayça	Çebi	
Dr.	Ayfer	Alper	
Dr.	Aynur	Kolburan	Geçer	
Dr.	Ayşegül	Bakar	Çörez	
Dr.	Bahar	Baran	
Dr.	Berrin	Doğusoy	
Dr.	Bilal	Atasoy	
Dr.	Deniz	Atal	Köysüren	
Dr.	Ebru	Kılıç	Çakmak	
Dr.	Ebru	Solmaz	
Dr.	Emin	İbili	
Dr.	Emine	Şendurur	
Dr.	Erinç	Karataş	
Dr.	Erhan	Güneş		
Dr.	Erkan	Çalışkan	
Dr.	Erkan	Tekinarslan	
Dr.	Ertuğrul	Usta	
Dr.	Fatma	Keskinkılıç	
Dr.	Fezile	Özdamlı	
	

Dr.	Filiz	Kalelioğlu	
Dr.	Gizem	Karaoğlan	
Dr.	Gökçe	Becit	İşçitürk	
Dr.	Gökhan	Dağhan	
Dr.	Gülfidan	Can	
Dr.	Halil	Ersoy	
Dr.	Halil	İbrahim	Yalın	
Dr.	Halil	Yurdugül			
Dr.	Hasan	Çakır	
Dr.	Hasan	Karal	
Dr.	Hatice	Durak	
Dr.	Hüseyin	Bicen	
Dr.	Hüseyin	Özçınar	
Dr.	Işıl	Kabakçı	Yurdakul		
Dr.	İbrahim	Gökdaş		
Dr.	İlknur	Resioğlu	
Dr.	Kevser	Hava	
Dr.	M.	Fikret	Gelibolu	
Dr.	Mehmet	Akif	Ocak	
Dr.	Mehmet	Barış	Horzum			
Dr.	Mehmet	Kokoç	
Dr.	Melih	Engin	
Dr.	Meltem	Kurtoğlu	
	

Dr.	Mukaddes	Erdem		
Dr.	Mustafa	Serkan	Günbatar	
Dr.	Mutlu	Tahsin	Üstündağ	
Dr.	Nadire	Çavuş	
Dr.	Necmettin	Teker	
Dr.	Necmi	Eşgi		
Dr.	Nezih	Önal	
Dr.	Nuray	Gedik	
Dr.	Nurettin	Şimşek	
Dr.	Onur	Dönmez	
Dr.	Ömer	Faruk	İslim	
Dr.	Ömer	Faruk	Ursavaş	
Dr.	Ömür	Akdemir		
Dr.	Özcan	Erkan	Akgün	
Dr.	Özden	Şahin	İzmirli		
Dr.	Özgen	Korkmaz		
Dr.	Özlem	Çakır	
Dr.	Ramazan	Yılmaz	
Dr.	Recep	Çakır	
Dr.	Sami	Acar	
Dr.	Sami	Şahin			
Dr.	Selay	Arkün	Kocadere	
Dr.	Selçuk	Özdemir	
	

Dr.	Serap	Yetik	
Dr.	Serdar	Çiftçi	
Dr.	Serçin	Karataş	
Dr.	Serpil	Yalçınalp		
Dr.	Sibel	Somyürek	
Dr.	Şafak	Bayır		
Dr.	Şeyhmus	Aydoğdu	
Dr.	Şirin	Karadeniz	
Dr.	Tayfun	Tanyeri	
Dr.	Tolga	Güyer			
Dr.	Tolga	Kabaca	
Dr.	Türkan	Karakuş	
Dr.	Uğur	Başarmak	
Dr.	Ümmühan	Avcı	Yücel	
Dr.	Ünal	Çakıroğlu	
Dr.	Veysel	Demirer	
Dr.	Yalın	Kılıç	Türel	
Dr.	Yasemin	Demirarslan	Çevik	
Dr.	Yasemin	Gülbahar	Güven		
Dr.	Yasemin	Koçak	Usluel		
Dr.	Yavuz	Akbulut	
Dr.	Yusuf	Ziya	Olpak	
Dr.	Yüksel	Göktaş	
	

*	Liste	isme	göre	alfabetik	olarak	oluşturulmuştur.	/	List	is	created	in	alphabetical	order.	
	

İletişim	Bilgileri	/	Contact	Information	
	

İnternet	Adresi	/	Web:	http://dergipark.ulakbim.gov.tr/etku/	
E-Posta	/	E-Mail:	tguyer@gmail.com	
Telefon	/	Phone:	+90	(312)	202	17	38	
Belgegeçer	/	Fax:	+90	(312)	202	83	87	

Adres	/	Adress:	Gazi	Üniversitesi,	Gazi	Eğitim	Fakültesi,	Bilgisayar	ve	Öğretim	Teknolojileri	Eğitimi	Bölümü,																														
06500	Teknikokullar	-	Ankara	/	Türkiye	



	 158	

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	
Cilt:7	Sayı:1	Yıl:2017	

	
	

	
	

COMPUTER	PROGRAMMING	SELF-EFFICACY	SCALE	(CPSES)	FOR	SECONDARY	
SCHOOL	STUDENTS:	DEVELOPMENT,	VALIDATION	AND	RELIABILITY	

Volkan	KUKUL1	,	Şahin	GÖKÇEARSLAN2*,	Mustafa	Serkan	GÜNBATAR3			

Abstract	

Computer	programming	has	been	 included	 in	 the	curriculum	of	K12	education	around	 the	
world	and	this	has	necessitated	a	tool	for	the	assessment	of	the	computer	programming	self-
efficacy.	 Thus,	 this	 study	 aims	 to	 suggest	 the	 necessary	 scale	 for	 the	 field.	 In	 the	 scale	
development,	the	steps	of	classical	measurement	theory	were	applied.	Following	the	expert	
review,	the	item	pool	was	conducted	with	233	students	in	a	public	secondary	school	which	
provides	education	to	the	age	group	of	12-14	in	the	school	year	2014-2015.	As	a	result	of	the	
study,	a	unidimensional	5-point	Likert	scale	of	31	items	was	obtained.	The	factor	loads	varied	
between	0.47	and	0.71	and	the	explained	variance	rate	was	41.15%.	 In	 the	analysis	of	 the	
internal	 consistency,	 sufficient	 values	 were	 found;	 the	 Cronbach	 alpha	 as	 0.95	 and	 the	
equivalent	 halves	 method	 result	 as	 0.96.	 For	 the	 construct	 validity,	 exploratory	 and	
confirmatory	factor	analysis	were	applied	and	the	result	showed	that	the	scale	 is	valid	and	
reliable.	

Keywords:	Computer	Programming,	Teaching	Computer	Programming,	Self-Efficacy	

	

ORTAOKUL	ÖĞRENCİLERİ	İÇİN	PROGRAMLAMA	ÖZYETERLİK	ÖLÇEĞİ:	
GELİŞTİRME,	GEÇERLİK	VE	GÜVENİRLİK		

	

Öz	

Bilgisayar	programlama,	 son	yıllarda	 tüm	dünyada	K-12	eğitim	müfredatlarında	yer	almaya	
başlamıştır	 ve	 programlama	 öz-yeterliğinin	 ölçülmesi	 için	 bir	 araç	 geliştirilmesine	 ihtiyaç	
duyulmuştur.	Bu	çalışmanın	amacı	bu	ihtiyacı	gidermek	adına	alana	katkı	sağlamaktır.	Aracın	
geliştirilmesinde	klasik	ölçme	teorisinin	basamakları	kullanılmıştır.	Çalışma	2014-2015	eğitim	
öğretim	 yılının	 bahar	 döneminde	 bir	 devlet	 okulunda	 yaşları	 12-14	 arasında	 değişen	 233	
öğrenci	 ile	 yürütülmüştür.	 Çalışmanın	 sonucunda	 31	maddeden	 oluşan	 tek	 faktörlü	 ölçme	
aracı	 ortaya	 çıkmıştır.	 Ölçme	 aracındaki	 maddelerin	 madde	 yükleri	 0.47	 ile	 0.71	 arasında	

																																																								
1	Ar.	Gör.,	Gazi	Üniversitesi,	volkankukul@gazi.edu.tr	
2	Dr.,	Gazi	Üniversitesi,	sgokcearslan@gazi.edu.tr	*Corresponding	Author	
3	Yrd.Doç.Dr.,	Van	100.yıl	Üniversitesi,	msgunbatar@gmail.com	

Makale	Geçmişi	/	Article	History	
Alındı/Received:	14.07.2016	
Düzeltme	Alındı/Received	in	revised	form:	22.01.2017	
Kabul	edildi/Accepted:	23.01.2017	



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

159	

değişmektedir	 ve	 ölçeğin	 açıkladığı	 toplam	 varyans	 %41.15’tir.	 Ölçeğin	 iç	 tutarlılığını	
belirlemek	 amacıyla	 yapılan	 analizlere	 göre	 Cronbach	 alfa	 katsayısı	 0.95,	 iki	 yarı	 metodu	
sonuçları	 ise	 0.96	 çıkmıştır	 ve	 bu	 sonuçlar	 ölçme	 aracının	 iç	 tutarlılığının	 yüksek	 olduğunu	
göstermektedir.	Ölçeğin	yapı	geçerliğini	belirlemek	amacıyla	açımlayıcı	ve	doğrulayıcı	faktör	
analizleri	uygulanmış	ve	analiz	sonuçlarına	göre	ölçeğin	geçerli	ve	güvenilir	olduğu	sonucuna	
varılmıştır.	

Anahtar	Kelimeler:	Bilgisayar	Programlama,	Bilgisayar	Programlama	Eğitimi,	Öz-Yeterlilik	

	

Geniş	Özet	

	

	 Günümüzde,	 bilişim	 teknolojilerindeki	 gelişmelerle	 insanların	 problemlere	 çözüm	
arayışları	farklılaşmıştır.	Uzun	sürede	bitirilebilecek	bir	iş	ya	da	görev	teknolojiyi	kullanarak	kısa	
sürede	 bitirebilmektedir.	 Dijital	 teknolojinin	 içerisinde	 büyüyen	 çocukların,	 sadece	 o	
teknolojiyi	 kullanmaları	 değil,	 gerekirse	 yeni	 teknolojiler	 üreterek	 üst	 düzey	 düşünme	
becerilerinin	gelişmesi	beklenmektedir	(Kalelioğlu,	2015).	Bu	üst	düzey	becerilerden	bir	tanesi	
de	 Bilgi	 İşlemsel	 Düşünmedir	 (Computational	 Thinking)	 (Philips,	 2009;	 Wing	 2010).	 Bilgi	
İşlemsel	Düşünme,	sadece	bilgisayar	bilimcilerinin	değil	tüm	insanların	sahip	olmaları	gereken	
bir	 beceri	 olarak	 görülmektedir	 (Korkmaz,	 Çakir,	&	Özden,	 2017;	Wing,	 2006;	Wing,	 2008;	
Wing,	2010).  

 Bilgi	 İşlemsel	 Düşünme	 becerisinin	 öğrencilere	 kazandırılmasında	 sık	 kullanılan	
yöntemlerden	 bir	 tanesi,	 “Başlangıç	 Öğrenme	 Ortamları”	 olarak	 değerlendirilen	 görsel	
programlama	araçlarıyla	bilgisayar	programlama	öğretimidir	(Weinberg,	2013).	Programlama	
becerisi	 yaratıcı	 düşünme,	 problem	 çözme,	 mantıksal	 çıkarım	 gibi	 üst	 düzey	 düşünme	
becerilerinin	geliştirilmesine	olanak	tanımaktadır	(Fesakis	&	Serafeim,	2009;	Fessakis,	Gouli,	&	
Mavroudi,	 2013;	 Kay	 &	 Knaack,	 2005).	 Bilgisayar	 programlama	 becerisinin	 öğrencilere	
sağladığı	katkı,	eğitimcilerin	ve	araştırmacıların	ilgisini	çekmiş	(Gökçearslan	&	Alper,	2015),	bu	
doğrultuda	Avrupa	ve	Amerika’da	erken	yaşlar	için	bilgisayar	programlama	öğretimine	yönelik	
ders	ve	etkinlikler	üzerine	yapılan	çalışmalar	artmıştır	 (Grover	&	Pea,	2013;	Kafai	&	Burke,	
2013).	 Birçok	ülke	 erken	 yaşlar	 için	 bilgisayar	 programlamayı	 ulusal	 programlarına	 entegre	
etmeye	başlamışlardır	(Kalelioğlu,	2015).	

	 Geçmişte	öğrencilere	bilgisayar	programlamanın	öğretilmeye	çalışılıp,	sadece	az	sayıdaki	
öğrencinin	başarılı	olması	(Resnick	et	al.,	2009),	“bu	sefer	de	aynı	sorunla	karşı	karşıya	kalınır	
mı?”	sorusunu	akla	getirmektedir.	Bunun	için	öğrencilerin	bilgisayar	programlamaya	yönelik	
düşünceleri	 ve	 bilgisayar	 programlamadaki	 başarılarının	 değerlendirilmesi	 gerekmektedir.	
Öğrencilerin	öz-yeterlilik	düzeylerinin	belirlenmesi,	başarıları	hakkında	yorum	yapabilmek	için	
önemli	bir	faktör	olarak	görülmektedir	(Aşkar	&	Davenport,	2009;	Anastasiadou	&	Karakos,	
2011).	Farklı	konu	alanlarında	öz-yeterlilik	düzeyini	ölçmek	 için	pek	çok	araştırma	olmasına	
rağmen,	bilgisayar	programlama	öz-yeterliliğini	ölçmek	 için	yapılmış	 çalışma	sayısının	 sınırlı	
olduğu	ifade	edilmektedir	(Aşkar	&	Davenport,	2009).	Yapılan	çalışmaların	genellikle	 lise	ve	
üniversite	düzeyinde	oldukları	 görülmektedir	 (Aşkar	&	Davenport,	 2009;	 Korkmaz	&	Altun,	
2014;	Mazman	&	Altun,	2013;	Ramalingam	&	Wiedenbeck,1998).	Bu	bağlamda	bu	çalışmanın	
odak	noktasını	erken	yaşlardaki	öğrencilerin	öz-yeterlilik	düzeylerini	belirlemek	için	“Ortaokul	
öğrencileri	için	Programlama	Öz-yeterlilik	Ölçeğinin”	geliştirilmesi	oluşturmaktadır.	



Computer	Programming	Self-Efficacy	Scale	(CPSES)	for	Secondary	School	Students:	Development,	
Validation	and	Reliability	

	

Cilt:7	Sayı:1	Yıl:2017	

160	

	 Bu	 araştırmada	 ortaokul	 öğrencilerinin	 programlama	 öz-yeterlik	 düzeylerini	 ölçmek	
amacıyla	bir	ölçek	geliştirmek	istendiği	için,	2014-2015	öğretim	yılında	Ankara’daki	bir	devlet	
ortaokulunda	öğrenim	gören	toplam	233	öğrenci	çalışma	grubunu	oluşturmuştur.	Grubun	%	
53.6’sını	 (n=125)	 kız	 öğrenciler,	 %	 46.4’ünü	 (n=108)erkek	 öğrenciler	 oluşturmuştur.	 Ayrıca	
öğrencilerin	%	19.3’ü	(n=45)	5.	sınıf,	%	59.2’si	(n=138)	6.	Sınıf	ve	%	21.5’i	(n=50)	7.	sınıfa	devam	
etmektedir.	

	 Kaiser-Meyer-Olkin	(KMO)	katsayısı	faktör	analizi	yapmak	için	örneklem	sayısının	yeterli	
olup	 olmadığını	 belirlemede	 kullanılan	 bir	 istatistiksel	 yöntemdir	 (Kan	 &	 Akbaş,	 2005).	 Bu	
amaçla	 KMO	 değeri	 belirlenmiştir	 ve	 0.949	 olarak	 karşımıza	 çıkmıştır.	 Faktör	 analizi	
yapılabilmek	için	en	düşük	KMO	değerinin	0.60	olması	önerilmektedir	(Özel,	Timur,	Timur	ve	
Bilen,	2013;	Pallant,	2001).	İkinci	olarak	Bartlett	Sphericity	testine	bakılmıştır	(χ2		=	3532.449,	
p.=0.000).	Verilerin	çok	değişkenli	normal	dağılım	gösterdiği	Barlett	Sphericity	 testi	 sonucu	
elde	edilen	Kay-kare	test	istatistiğinin	anlamlı	çıkması	ile	anlaşılmaktadır	(Kan	&	Akbaş,	2005).	
Bu	sonuçlar,	toplanan	verilerle	açımlayıcı	faktör	analizi	yapılabileceğine	işaret	etmiştir.	

	 Yapılan	 açımlayıcı	 faktör	 analizi	 sonucunda,	 başlangıçta	 33	maddelik	 ölçekten	 birden	
fazla	 faktöre	 benzer	 yük	 veren	 iki	madde	 çıkartılmıştır.	 Ölçeğin	 nihai	 formunda	 31	madde	
bulunmaktadır.	Tek	faktör	altında	değerlendirilen	ölçek	%	41.15	varyans	açıklama	yüzdesine	
sahiptir.	 Sosyal	 bilimler	 araştırmaları	 için	 bu	 oran	 kabul	 edilebilir	 bir	 düzeye	 karşılık	
gelmektedir	 (Büyüköztürk,	2010;	Çokluk,	Şekercioğlu	&	Büyüköztürk,	2010;	Hair,	Anderson,	
Tatham	&	Black,	1998). 

 Açımlayıcı	 Faktör	 Analizi	 (AFA)	 sonucu	 elde	 edilen	 faktör	 yapısına	 ilişkin	 modelin	
uygunluğu	 Doğrulayıcı	 Faktör	 Analizi	 (DFA)	 ile	 test	 edilmiştir.	 Modelin	 uygunluğuna	 ilişkin	
analiz	sonuçlarına	göre;		X2	/	df=1.84;	RMSEA	değeri	0.06;	NFI	değeri	0.95;	NNFI	değeri	0.98;	
RMR	değeri	0.068;	CFI	değeri	0.98;	IFI	değeri	0.98;	GFI	değeri	0.82	ve	AGFI	değeri	0.79	dur.	Bu	
analiz	 sonuçlarına	 göre	 model	 uyum	 değerlerinden	 bazılarının	 kabul	 edilebilir	 düzeyde	
olmadıkları	 görülmüştür.	 Modifikasyon	 önerileri	 gerçekleştirilmiştir.	 Bu	 modifikasyonlar	
sonucunda	X2/df=1.47;	RMSEA	değeri	0.045;	NFI	değeri	0.96;	NNFI	değeri	0.99;	RMR	değeri	
0.061;	 CFI	 değeri	 0.99;	 IFI	 değeri	 0.99;	 GFI	 değeri	 0.85	 ve	 AGFI	 değeri	 0.83	 olarak	 tespit	
edilmiştir.	

	 Cronbach	 alpha	 güvenirlik	 analizi	 sonucunda	 ölçeğin	 güvenirlik	 katsayısı	 0.95	 olarak	
oldukça	 yüksek	 değerde	 çıkmıştır	 (Özdamar,	 1999).	 Ölçek	 maddeleri	 tek	 ve	 çift	 maddeler	
olmak	üzere	iki	yarıya	bölünmüş	ve	eşdeğer	yarılar	(testi	yarılama)	yöntemiyle	de	güvenirlik	
analizi	 gerçekleştirilmiştir.	 Testin	 tümüne	 ait	 güvenirlik	 katsayısı	 Spearman-Brown	 yöntemi	
kullanılarak	bulunabilir	(Ellez,	2009).	Bu	noktadan	hareketle	testin	tamamına	ilişkin	Spearman	
Brown	yöntemi	ile	elde	edilen	güvenirlik	katsayısı	r	=	0.966	bulunmuştur.	Testin	birinci	ve	ikinci	
yarısı	arasındaki	ilişki	istatistiksel	açıdan	p<0.01	düzeyinde	pozitif	yönde	anlamlı	bulunmuştur.		

	 Tek	 faktörlü	 yapı	 gösteren	 bilgisayar	 programlama	 öz-yeterlik	 ölçeğini	 öğretmen	 ve	
araştırmacılar	 özellikle	 son	 zamanlarda	 yaygın	 biçimde	 çocuklara	 programlama	 becerisi	
kazandırmak	 için	 kullanılan	 Scratch,	 Logo,	 Alice	 vb.	 programların	 öğretimi	 sürecinde	
öğrencilerin	programlama	öz-yeterlik	düzeyini	ölçmek	için	kullanabilirler.	

	

	

	



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

161	

Introduction	

	 Today’s	developments	in	information	technologies	have	caused	human	beings	to	seek	
different	solutions	to	their	fundamental	problems.	Technology	can	enable	individuals	to	finish	
a	task	that	would	previously	have	taken	a	long	time	in	as	short	a	time	as	possible.	Children	
growing	up	within	the	digital	technology	age	are	expected	to	not	only	use	that	technology,	
but	 also	 to	 produce	 new	 technologies	 and	 develop	 high-level	 thinking	 skills,	 if	 necessary	
(Kalelioğlu,	2015).	One	of	these	high-level	skills	is	Computational	Thinking	(Philips,	2009;	Wing	
2010).	Computational	Thinking	is	considered	as	a	skill	that	should	be	possessed	not	only	by	
computer	scientists,	but	everyone	(Korkmaz,	Çakir,	&	Özden,	2017;	Wing,	2006;	Wing,	2008;	
Wing,	2010).		

	 One	of	the	methods	frequently	used	in	teaching	the	skill	of	computational	thinking	to	
students	is	computer	programming	teaching	via	visual	programming	instruments	that	can	be	
seen	 and	 evaluated	 as	 ‘Initiative	 Learning	 Environments’	 (Weinberg,	 2013).	 Computer	
programming	 skills	 contribute	 to	 the	 development	 of	 other	 high-level	 skills	 like	 problem-
solving,	logical	inference	and	creative	thinking	(Fesakis	&	Serafeim,	2009;	Fessakis,	Gouli,	&	
Mavroudi,	2013;	Kay	&	Knaack,	2005).	Trainers	and	researchers	have	become	aware	of	the	
contributions	made	to	students	by	having	the	skill	of	computer	programming		(Gökçearslan	&	
Alper,	2015),	which	has	resulted	in	the	increase	of	courses	and	activities	aimed	at	computer	
programming	teaching	for	young	ages	in	both	Europe	and	the	United	States	(Grover	&	Pea,	
2013;	 Kafai	 &	 Burke,	 2013).	 A	 number	 of	 countries	 have	 started	 to	 integrate	 computer	
programming	for	young	people	into	their	national	programs	(Kalelioğlu,	2015).		

	 Alongside	 the	development	 of	 computers,	 one	of	 the	 aims	was	 to	 teach	 all	 children	
computer	programming	methods	(Resnick	et	al.,	2009).	However,	the	difficulties	experienced	
by	 students	 while	 writing	 programs	 on	 a	 program-compiler	 and	 the	 use	 of	 uninteresting	
activities	 in	 computer	 programming	 teaching	 (Resnick	 et	 al.,	 2009)	 caused	 students	 to	
consider	 computer	 programming	 a	 difficult	 task	 (Aşkar	 &	 Davenport,	 2009;	 Caspersen	 &		
Kolling	2009).	The	idea	that	computer	programming	was	difficult	for	students	and	teachers	
(Armoni,	2011;	Gökçearslan	&	Alper,	2015)	has	tried	to	be	removed	via	practical	programs	like	
Scratch,	Alice	and	AppInventor	that	were	developed	for	visual	programming.	The	practicality	
of	the	environments	they	offer	and	their	use	of	visual	programming	(Lye	&	Koh,	2014)	have	
enabled	 younger	 students	 to	 learn	 the	 basic	 logic	 of	 computer	 programming	 (Kalelioğlu,	
2015).	 The	 fact	 that	 only	 a	 limited	 number	 of	 students	 have	 been	 successful	 in	 learning	
computer	programming	in	the	past	(Resnick	et	al.,	2009)	brings	to	mind	the	question,	“Will	
the	same	problem	occur	once	again?”	Thus,	it	is	required	that	the	thoughts	of	students	about	
computer	programming	and	their	success	in	computer	programming	be	evaluated.	Evaluating	
the	self-efficacy	 levels	of	students	 is	considered	an	important	factor	 in	terms	of	making	an	
interpretation	 about	 how	 successful	 they	 are	 or	 will	 be	 (Aşkar	 &	 Davenport,	 2009;	
Anastasiadou	&	Karakos,	 2011).	 Even	 though	 there	are	 various	 studies	 for	measuring	 self-
efficacy	levels	in	different	subject	areas,	there	is	a	limited	number	of	studies	for	measuring	
self-efficacy	in	relation	to	computer	programming	(Aşkar	&	Davenport,	2009).	The	studies	that	
have	 been	 conducted	 generally	 comprise	 high	 school	 and	 university	 students	 (Aşkar	 &	
Davenport,	 2009;	 Korkmaz	 &	 Altun,	 2014;	 Mazman	 &	 Altun;	 2013	 Ramalingam	 &	
Wiedenbeck,1998).	 In	 this	 context,	 this	 study	 focuses	 on	 developing	 the	 “Computer	
Programming	 Self-Efficacy	 Scale	 for	 Secondary	 School	 Students”	 for	 determining	 the	 self-
efficacy	levels	of	younger	students.	



Computer	Programming	Self-Efficacy	Scale	(CPSES)	for	Secondary	School	Students:	Development,	
Validation	and	Reliability	

	

Cilt:7	Sayı:1	Yıl:2017	

162	

Literature	review	

Teaching	computer	programming	in	K-12	education	

	 The	LOGO	program	has	been	used	in	computer	programming	teaching	aimed	at	K-12	
students	since	the	1960s	(Feurzeig	&	Papert,	2011,	p.	487).	During	the	1980s,	when	the	first	
personal	computer	was	introduced,	there	was	a	demand	for	teaching	all	children	how	to	carry	
out	computer	programming,	and	millions	of	students	in	thousands	of	schools	wrote	simple	
programs	via	the	LOGO	and	Basic	programs	(Resnick	et	al.,	2009).	In	later	learning/teaching	
processes,	computer	programming	teaching	was	conducted	at	various	different	levels.	Even	
though	various	package	software	for	teaching	computer	programming	teaching	was	excluded	
from	the	teaching	process	despite	 its	common	usage	(Kafai	&	Burke,	2015),	 it	has	recently	
been	used	again	as	a	popular	 tool	 in	 the	 international	arena.	Computer	and	programming	
courses	have	also	started	to	be	taught	at	an	early	age	in	a	number	of	countries	(Jones,	2011).	
In	the	United	States,	the	Computer	Science	Teacher	Association	emphasizes	the	importance	
of	computational	thinking	and	computer	programming	at	the	K-12	level,	and	states	that	these	
will	provide	skills	that	are	needed	in	a	number	of	disciplines	(Seehorn	et	al,	2011).	There	have	
been	studies	conducted	for	teaching	problem-solving	skills	to	preschoolers	aged	5-6	via	wizard	
computer	programming	(Fessakis,	Gouli	&	Mavroudi,	2013).	In	Turkey,	while	the	Information	
Technologies	and	Software	 course	used	 to	be	 taught	as	an	elective	 course,	 it	has	become	
compulsory	for	secondary	schools	as	from	2012.			

	 It	has	been	suggested	that	a	computer	programming	education	is	a	lifelong	process	that	
not	only	consists	of	coding,	but	also	enables	students	to	apply	the	stages	of	problem-solving	
using	 various	 resources	 (Booth,	 1992;	 Maheshwari,	 1997).	 Today,	 students	 are	 able	 to	
construct	 algorithms	 via	 different	 computer	 programming	 instruments,	 in	 different	
environments	 and	 through	 teaching	 methods,	 and	 the	 attempt	 is	 being	 made	 to	 depict	
computer	 programming	 as	 a	 not-so-difficult	 process	 (Lewis,	 2010;	 Resnick	 et	 al.,	 2009).		
Studies	generally	focus	on	variables	regarding	the	motivation	of	students	toward	computer	
programming	(Kelleher,	Pausch,	&	Kiesler,	2007;	Kelleher,	&	Pausch,	2007),	attitudes	toward	
computer	programming	(Kalelioğlu,	2015)	and	self-efficacy	(Lee,	Park	&	Hwang,	2013).		

Self-efficacy	

	 It	is	known	that	a	number	of	factors	are	effective	for	success	in	the	learning	process	and	
that	 self-efficacy	 and	 attitude	 are	 more	 important	 than	 other	 factors	 (Austin,	 1987;	
Anastasiadou	&	Karakos,	2011).	Self-efficacy	can	be	defined	as	the	perceptions	of	students	
regarding	their	own	skills	and	is	thought	to	be	directly	associated	with	their	performance	and	
effort	 in	 performing	 a	 task	 (Bandura,	 1977).	 As	 developed	within	 the	 scope	 of	 the	 Social	
Cognitive	Theory,	the	notion	of	self-efficacy	plays	a	key	role	in	determining	the	emotions	that	
affect	human	behaviors	and	performance,	such	as	happiness,	sorrow	and	shame	(Bandura,	
2001).		A	higher	level	of	self-efficacy	will	increase	the	success	of	individuals	and	the	level	of	
happiness	caused	by	that	success.	Individuals	who	trust	their	talents	are	more	advanced	in	
coping	with	difficult	tasks	(Bandura,	2001).	

	 In	 measuring	 self-efficacy,	 the	 aim	 is	 to	 measure	 the	 performance	 capacities	 of	
individuals	 rather	 than	 their	 personal	 qualities	 (Zimmerman,	 2000).	 It	 is	 thought	 that	



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

163	

determining	the	self-efficacy	levels	of	individuals	could	be	used	as	a	means	of	increasing	their	
success	as	it	provides	feedback	about	their	performance	(Askar	&	Davenport,	2009).		

Measurement	of	self-efficacy	in	terms	of	computer	programming	

	 One	 of	 the	 most	 commonly	 known	 tools	 for	 the	 measurement	 of	 computer	
programming	self-efficacy	is	the	Computer	Programming	Self	Efficacy	Scale	(CPSES),	designed	
by	Ramalingam	and	Wiedenbeck	(1998).	The	scale	consists	of	32	items	and	7-point	Likert-type	
questions	were	formulated	to	determine	the	self-efficacy	of	students.	Answers	were	graded	
from	1	(‘not	confident	at	all’)	to	7	(‘absolutely	confident’).		The	data	collection	process	was	
carried	out	with	421	students	in	the	first	week	of	a	semester	at	a	large	public	university.	The	
scale	was	developed	for	the	C++	programming	language.	Items	were	collected	for	4	factors	in	
accordance	 with	 exploratory	 factor	 analysis.	 These	 factors	 were	 “(1)	 independence	 and	
persistence,	(2)	complex	programming	tasks,	(3)	self-regulation	and	(4)	simple	programming	
tasks”	(Ramalingam	and	Wiedenbeck,	1998).	On	the	full	32	item	scale,	reliability	coefficients	
and	empirically	obtained	factors	as	outcomes	of	exploratory	factor	analysis	were	determined	
for	the	scores.	The	reliability	of	test-retest	was	also	determined.	The	overall	alpha	reliability	
for	the	scores	was	.98.	The	scores	also	had	.50	to	.84	corrected	item-total	correlations.	The	
alpha	reliabilities	of	the	factors	were	as	follows:	(1)	independence	and	persistence	=	.94,	(2)	
complex	programming	tasks	=	.93,	(3)	self-regulation	=	.86,	and	(4)	simple	programming	tasks	
=	 .93.	 Ramalingam	 and	 Wiedenbeck	 (1988)	 developed	 a	 scale	 for	 a	 group	 of	 novice	
programmers	 in	 a	 special	 programming	 language	 (C++).	 This	 scale	was	 adapted	 to	 Turkish	
(Altun	 &	 Mazman,	 2012).	 Assessment	 of	 the	 general	 programming	 self-efficacy	 levels	 of	
secondary	education	students	is	of	 importance	in	the	context	of	the	place	of	programming	
education	in	the	K12	education	program.	

Aim	of	the	study	

	 The	skill	of	computational	thinking,	which	is	thought	to	be	among	the	necessary	life	skills	
required	in	the	21st	century	(Philips,	2009;	Wing	2010),	is	also	possibly	considered	to	have	a	
positive	effect	upon	the	development	of	other	high-level	thinking	skills	in	students	(Brichacek,	
2014).	Today,	one	of	the	methods	being	used	in	inculcating	the	skill	of	computational	thinking	
is	the	teaching	of	computer	programming.	A	number	of	countries	have	conducted	studies	in	
an	attempt	 to	develop	 the	 skills	of	 computer	programming	 in	 young	 children.	Despite	 the	
positive	effects	and	popularity	of	the	learning	computer	programming	skills,	learning	them	is	
considered	difficult	by	both	teachers	and	students	(Nilsen	&	Larsen,	2011;	Caspersen	&	Kolling	
2009;	Shadiev	et	al.,	2014).	In	addition	to	this,	it	has	been	observed	that	students	have	a	low	
performance	in	computer	programming	courses	(Aşkar	&	Davenport,	2009).	Determining	the	
level	of	self-efficacy,	which	is	one	of	the	indicators	of	performance,	can	be	considered	among	
the	 factors	 that	 would	 provide	 information	 about	 the	 potential	 computer	 programming	
performance	of	students.	Researchers	and	educators	have	paid	great	attention	to	computer	
programming	(Ke,	2014;	Uysal	&	Yalın,	2012).		

	 Additionally,	 Aşkar	 and	 Davenport	 (2009)	 emphasized	 that	 the	 perception	 of	 self-
efficacy	has	been	investigated	in	a	number	of	areas,	in	an	attempt	to	examine	the	relationship	
between	academic	success	and	demographic	features,	but	that	there	have	only	been	a	limited	
number	of	studies	regarding	computer	programming,	which	could	be	associated	with	the	fact	
that	 even	 though	 there	 are	 instruments	 aimed	at	measuring	 the	 self-efficacy	 for	 different	



Computer	Programming	Self-Efficacy	Scale	(CPSES)	for	Secondary	School	Students:	Development,	
Validation	and	Reliability	

	

Cilt:7	Sayı:1	Yıl:2017	

164	

subject	areas	(Compeau	&	Higgins,	1995;	Murphy,	Coover	&	Owen,	1989),	there	is	a	limited	
number	of	assessment	instruments	regarding	the	actual	skills	of	computer	programming.	Even	
though	the	literature	 involves	assessment	 instruments	aimed	at	determining	the	computer	
programming	 self-efficacy	 levels	 of	 university	 students	 (Ramalingam	&	Wiedenbeck,1998),	
there	 is	 no	 assessment	 instrument	 developed	 specifically	 for	 secondary	 school	 students.	
Considering	 the	 fact	 that	 the	 computer	 programming	 teaching	 has	 recently	 become	
widespread	at	the	K-12	level,	 it	could	be	asserted	that	there	is	also	a	need	for	self-efficacy	
studies	at	this	level.	The	focal	point	of	this	study	comprises	the	development	of	a	Computer	
Programming	 Self-Efficacy	 Scale	 for	 secondary	 school	 students	 in	 order	 to	 remove	 this	
deficiency	in	the	literature.		

Method	

	 This	is	a	scale	development	study.	This	section	involves	the	participants,	procedure	and	
the	data	analysis	of	the	scale.		

Participants		

	 This	study	was	conducted	with	a	study	group	of	233	students	from	the	age	group	of	12-
14	receiving	education	at	a	public	secondary	school	in	Ankara	in	the	school	year	2014-2015.	
According	to	the	literature	if	the	sample	size	is	over	then	200,	it	is	enough	for	factor	analyis	
(Büyüköztürk,	2002;	Kline,	1994).		Sample	size	-233	students-	is	enough	for	factor	analysis.	The	
scale	was	developed	by	employing	statistical	processes	on	the	data	that	were	obtained	from	
this	study	group.	In	the	group,	53.6%	(n=125)	were	female	students	and	46.4%	(n=108)	were	
male	students.	19.3%	of	students	were	(n=45)	5th	grade	(the	age	of	12),	59.2%	(n=138)	6th	
grade	(the	age	of	13)	and	21.5%	(n=50)	7th	grade	(the	age	of	14).	Students	that	participated	
in	 the	study	were	 trained	 for	programming	via	Scratch	and	SmallBasic	within	 the	scope	of	
Information	Technologies	and	Software	lessons.	

Procedure	

	 The	 scale	developed	according	 to	 classical	measurement	 theory.	 The	 following	 steps	
were	taken	in	the	scale	development	proccess	(DeVellis,	2003);	

• “Determine	clearly	what	it	is	you	want	to	measure	
• Generate	an	item	pool	
• Determine	the	format	for	measurement	
• Have	the	initial	item	pool	reviewed	by	experts	
• Consider	inclusion	of	validation	items	
• Administer	items	to	a	development	sample	
• Evaluate	the	items	
• Optimize	scale	length”	

	 We	 first	 examined	 the	 previous	 scales	 that	 had	 been	 developed	 (Ramalingam	 &	
Wiedenbeck,	1998)	and	adapted	(Aşkar	&	Davenport,	2009;	Korkmaz	&	Altun,	2014;	Altun	&	
Mazman,	2012)	to	measure	the	computer	programming	self-efficacy.	Then,	the	standarts,	set	
by	 the	 organizations	 like	 Computer	 Science	 Teacher	 Association	 (CSTA)	 and	 International	
Society	for	Technology	in	Education	(ISTE),	were	examined.	Finally,	an	item	pool	was	created	



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

165	

by	writing	items	in	accordance	with	the	educational	levels	of	secondary	school	studentsas	a	
result	of	the	screening	that	had	been	performed	in	the	literature.	While	item	pool	was	being	
created,	the	competencies	in	the	National	ICT	Curriculum	were	taken	into	consideration.	The	
item	pool	involved	a	total	of	30	items.	Items	listed	considering	the	steps	used	for	the	solution	
of	 a	 programming	 problem.	 We	 used	 a	 5-point	 likert	 scale	 for	 expressing	 the	 level	 of	
agreement	 regarding	 the	 items	 in	 the	 scale	 (“strongly	 agree”,	 “agree”,	 “undecided”,	
“disagree”,	and	“strongly	disagree”).	In	the	validity	study,	we	at	first	presented	the	content	to	
7	academics	who	had	studied	computer	programming	in	the	field	of	educational	technology	
to	check	the	content	validity,	as	well	as	to	a	Turkish	 language	linguist	who	is	specialized	in	
children’s	 literature,	 and	 canvassed	 their	 opinions	 via	 Expert	 Opinion	 Form.	 Experts	were	
asked	to	mark	if	it	is	appropriate	or	not	for	every	item	in	the	Expert	Opinion	Form.	According	
to	 the	 opinions	 and	 criticisms	 received,	we	made	 the	 required	 corrections,	 additions	 and	
deletions	from	the	scale	items,	formed	a	scale	of	a	total	of	33	items	and	conducted	the	validity	
and	reliability	studies	on	the	basis	of	these	items.	All	participants	participated	in	the	study	on	
a	voluntary	basis.	

Data	analysis	

	 The	following	analyses	were	performed	in	an	attempt	to	prove	the	validity	and	
reliability	of	the	data	obtained	from	233	secondary	school	students:		

• Kaiser-Meyer	Olkin	(KMO)	coefficient	and	Barlett’s	Sphericity	test	for	determining	the	
fit	of	the	data	for	the	factor	(principal	components)	analysis.		

• Exploratory	Factor	Analysis	(EFA)	and	Confirmatory	Factor	Analysis	(CFA)	for	proving	
the	construct	validity.		

• Parallel	analysis	for	deciding	on	the	sub-factor	number	of	the	scale.	

• Cronbach’s	Alpha	and	Equivalent	Halves	method	reliabilities	for	proving	the	
reliability.		

• Item	test	correlations	for	proving	the	item	validity.	

Results	

	 In	 the	 study,	 the	 statistical	 processes,	 exploratory	 factor	 analysis	 and	 confirmatory	
factor	analysis	were	performed	sequentially.		

Findings	regarding	the	fit	for	the	factor	(principal	components	analysis)	

	 The	Kaiser-Meyer-Olkin	 (KMO)	coefficient	 is	a	statistical	method	used	 in	determining	
whether	or	not	the	sample	is	suitability	for	conducting	a	factor	analysis	(Kan	&	Akbaş,	2005).	
For	this	purpose,	we	determined	the	KMO	value	as	0.949.	The	minimum	KMO	value	of	0.6	is	
suggested	 for	 conducting	 a	 factor	 analysis	 upon	 data	 (Özel,	 Timur,	 Timur	 &	 Bilen,	 2013;	
Pallant,	2010).	Secondly,	we	checked	the	Bartlett	Sphericity	test	(χ2		=	3532.449,	p.=0.000).	
The	 fact	 that	 the	 Chi-square	 test	 acquired	 as	 a	 result	 of	 the	 Barlett	 Sphericity	 test	 was	
significant	indicates	that	the	data	come	from	a	multivariate	normal	distribution	(Kan	&	Akbaş,	
2005).	According	to	these	results,	it	was	observed	that	the	exploratory	factor	analysis	could	



Computer	Programming	Self-Efficacy	Scale	(CPSES)	for	Secondary	School	Students:	Development,	
Validation	and	Reliability	

	

Cilt:7	Sayı:1	Yıl:2017	

166	

be	performed	via	the	acquired	data.	In	Table	1,	range,	min,	max,	mean,	standard	deviation,	
skewness,	kurtosis	values	of	the	items	are	given.	

Table	1	

Descriptive	statistics	about	Scale	Items	

Item	 N	 Range	 Min	 Max	 Mean	 S.D.	 Skewness	 Kurtosis	

I1	 233	 4.00	 1.00	 5.00	 3.7597	 1.10356	 -.754	 .030	
I2	 233	 4.00	 1.00	 5.00	 3.5451	 1.07835	 -.554	 -.232	
I3	 233	 4.00	 1.00	 5.00	 3.8584	 1.08740	 -.953	 .385	
I4	 233	 4.00	 1.00	 5.00	 3.9657	 1.10976	 -1.115	 .728	
I5	 233	 4.00	 1.00	 5.00	 4.1459	 1.10453	 -1.454	 1.558	
I6	 233	 4.00	 1.00	 5.00	 3.8369	 1.09427	 -.906	 .260	
I7	 233	 4.00	 1.00	 5.00	 3.8155	 1.06889	 -.822	 .133	
I8	 233	 4.00	 1.00	 5.00	 3.5794	 1.13103	 -.614	 -.325	
I9	 233	 4.00	 1.00	 5.00	 3.8197	 1.09156	 -.840	 .104	
I10	 233	 4.00	 1.00	 5,00	 3.8412	 1.08104	 -.898	 .336	
I11	 233	 4.00	 1.00	 5.00	 3.3519	 1.27499	 -.307	 -.963	
I12	 233	 4.00	 1.00	 5.00	 3.7682	 1.26880	 -.833	 -.298	
I13	 233	 4.00	 1.00	 5.00	 3.4893	 1.16008	 -.483	 -.475	
I14	 233	 4.00	 1.00	 5.00	 3.7124	 1.07024	 -.746	 .015	
I15	 233	 4.00	 1.00	 5.00	 3.6137	 1.14703	 -.705	 -.200	
I16	 233	 4.00	 1.00	 5.00	 3.6438	 1.13607	 -.529	 -.493	
I17	 233	 4.00	 1.00	 5.00	 3.6266	 1.14943	 -.674	 -.327	
I18	 233	 4.00	 1.00	 5.00	 3.5236	 1.14493	 -.293	 -.655	
I19	 233	 4.00	 1.00	 5.00	 3.8026	 1.24381	 -.799	 -.348	
I20	 233	 4.00	 1.00	 5.00	 3.7983	 1.13624	 -.841	 .035	
I21	 233	 4.00	 1.00	 5.00	 3.7296	 1.09852	 -.667	 -.120	
I22	 233	 4.00	 1.00	 5.00	 3.8498	 1.16660	 -.854	 -.071	
I23	 233	 4.00	 1.00	 5.00	 3.5794	 1.05614	 -.421	 -.245	
I24	 233	 4.00	 1.00	 5.00	 3.6609	 1.16747	 -.738	 -.108	
I25	 233	 4.00	 1.00	 5.00	 3.8712	 1.09493	 -.775	 -.043	
I26	 233	 4.00	 1.00	 5.00	 3.5622	 1.06137	 -.448	 -.205	
I27	 233	 4.00	 1.00	 5.00	 4.0215	 1.16503	 -1.048	 .185	
I28	 233	 4.00	 1.00	 5.00	 3.8026	 1.21931	 -.839	 -.236	
I29	 233	 4.00	 1.00	 5.00	 3.5322	 1.16709	 -.480	 -.445	
I30	 233	 4.00	 1.00	 5.00	 3.7210	 1.15009	 -.741	 -.159	
I31	 233	 4.00	 1.00	 5.00	 3.8584	 1.13397	 -.881	 .084	
Average		 233	 4.00	 1.00	 5.00	 3.7318	 .72310	 -1.058	 1.641	

	



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

167	

Findings	regarding	the	exploratory	factor	analysis		

	 As	a	result	of	the	exploratory	factor	analysis,	we	initially	excluded	two	items	because	
they	placed	a	similar	load	on	more	than	one	factor	within	the	scale	of	33	items.	The	final	form	
of	the	scale	involves	31	items.		

	 It	could	be	suggested	that	factors	equal	to	the	number	of	components	with	Eigen	values	
larger	than	1	should	be	included	(Çokluk,	Şekercioğlu	&	Büyüköztürk,	2010).	Examining	the	
Total	Variance	Distribution	Being	Explained	in	Table	1,	we	could	observe	six	factors	with	Eigen	
values	 larger	 than	 1.	 However,	 according	 to	 the	 parallel	 analysis	 method	 (Pallant,	 2010),	
alternatively	used	in	determining	the	number	of	factors	(especially	for	the	scales	developed	
for	social	sciences	studies),	the	number	of	factors	was	determined	as	1.	“In	this	analysis,	a	
program	is	used	that	is	called	Monte	Carlo	PCA	for	Parallel	Analysis.	In	this	program	you	are	
asked	for	three	pieces	of	information:	the	number	of	variables	you	are	analysing	(number	of	
items);	 the	number	of	participants	 in	 your	 sample;	 andthe	number	of	 replications	 (specify	
100).After	that,	this	generates	100	sets	of	random	data	of	same	size	as	real	data	file.	It	will	
calculate	the	average	eigenvalues	for	these	100	randomly	generated	samples	and	print	these	
out	for	you. After	that	you	compare	the	eigenvalues	obtained	from	SPSS	and	Monte	Carlo	PCA	
for	Paralel	Analysis.	If	your	value	is	larger	than	the	criterion	value	from	parallel	analysis,	you	
retain	this	factor;	if	it	is	less,	you	reject	it”	(Pallant,	2010,	p.194).	While	Table	2	shows	total	
variance	distributions,	Table	3	shows	the	results	of	the	parallel	analysis,	Table	4	shows	the	
findings	regarding	the	item	factor	loads	and	test	correlations.		

Table	2	

Total	Variance	Distributions	Being	Explained	

Component	

Initial	Eigenvalues	 Extraction	sums	of	squared	loadings	

Total	 %	of		
variance	

	Cumulative	%	 Total	 %	of	
variance	

Cumulative	
%	

1	 12.756	 41.150	 41.150	 12.756	 41.150	 41.150	
2	 1.349	 4.351	 45.501	 	 	 	
3	 1.240	 4.001	 49.501	 	 	 	
4	 1.134	 3.658	 53.159	 	 	 	
5	 1.044	 3.368	 56.527	 	 	 	
6	 1.017	 3.280	 59.807	 	 	 	

	

Examining	Table	2,	the	scale	being	evaluated	under	one	factor	shows	variance	at	the	rate	of	
41.15%,	which	 is	 acceptable	 for	 one	 factor	 structure	 (>	 30%)	 (Büyüköztürk,	 2010;	 Çokluk,	
Şekercioğlu	&	Büyüköztürk,	2010;	Tabachnick	&	Fidell,	1996).	There	is	no	exact	threshold	value	
of	the	explained	total	variance	in	the	EFA	test	for	all	practices.	In	social	sciences	although	60	
%	explained	total	variance	is	frequently	encountered,	this	value	can	be	lower	(Hair,	Anderson,	
Tatham	 &	 Black,	 1998).	 Rotating	 procedure	 simplifies	 the	 factor	 structure	 (Abdi,	 2003).	
Rotated	structure	attempts	to	have	each	variable	load	on	as	few	factors	as	possible	(Yong	&	
Pearce,	2013).	The	scale	is	formad	by	a	single	factor	that’s	way	rotation	is	not	performed.	



Computer	Programming	Self-Efficacy	Scale	(CPSES)	for	Secondary	School	Students:	Development,	
Validation	and	Reliability	

	

Cilt:7	Sayı:1	Yıl:2017	

168	

Table	3	

Comparison	of	Eigenvalues	from	PCA	and	Criterion	Values	from	Parallel	Analysis	

Component	number	 Actual	eigenvalue	from	
PCA	

Criterion	 value	 from	
parallel	analysis	 Desicion	

1	 12.756	 1.7498	 Accept	
2	 1.349	 1.6380	 Reject	
3	 1.240	 1.5644	 Reject	
4	 1.134	 1.4979	 Reject	
5	 1.044	 1.4388	 Reject	
6	 1.017	 1.3825	 Reject	

	

According	to	the	Table	3,	just	one	dimention	is	accepted.	The	test		results	proves	that	the	scale	
is	one	dimensional	

Table	4	

	Factor	Load	Distribution	Values	and	Item	test	correlations	of	the	Programming	Self-Efficacy	
Scale	for	Secondary	School	Students	

Items***	

Factor	
load	

Corelation	 Total	scale	
correlation	

Cronbach's	
Alpha	if	
Item	
Deleted	

I24:	I	can	enable	the	program	to	
produce	accurate	results.	

0.718	 Pearson	Correlation	 0.712**	 0.949	
Significance	(2-tailed)	 0.000	 	

I6:	 I	 can	 solve	 the	 problem	 via	
different	solutions.	

0.709	 Pearson	Correlation	 0.702**	 0.949	
Significance	(2-tailed)	 0.000	 	

I16:	 I	 know	 how	 to	 use	 the	
programming	variables.	

0.708	 Pearson	Correlation	 0.707**	 0.949	
Significance	(2-tailed)	 0.000	 	

I22:	I	can	operate	the	program	I	
have	developed.	

0.707	 Pearson	Correlation	 0.702**	 0.949	
Significance	(2-tailed)	 0.000	 	

I27:	 I	 can	 record	 the	program	 I	
have	developed.	

0.703	 Pearson	Correlation	 0.699**	 0.949	
Significance	(2-tailed)	 0.000	 	

I31:	 I	 can	 explain	 my	 idea	 of	
software	project	step	by	step.	

0.695	 Pearson	Correlation	 0.691**	 0.949	
Significance	(2-tailed)	 0.000	 	

I30:	 Among	 the	 multiple	
software	 projects,	 I	 select	 the	
one	 that	 is	 the	 fittest	 for	 the	
criterion.	

0.693	 Pearson	Correlation	 0.691**	 0.949	
Significance	(2-tailed)	 0.000	 	

I5:	I	select	the	fittest	knowledge	
for	 solving	 the	 programming	
problem.	

0.693	 Pearson	Correlation	 0.668**	 0.949	

Significance	(2-tailed)	 0.000	 	

I4:	 I	 investigate	 the	 knowledge	
that	 is	 required	 for	 solving	 the	
programming	problem.	

0.691	 Pearson	Correlation	 0.610**	 0.949	

Significance	(2-tailed)	 0.000	 	



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

169	

Items***	

Factor	
load	

Corelation	 Total	scale	
correlation	

Cronbach's	
Alpha	if	
Item	
Deleted	

I10:	 Among	 various	 steps	 of	
solution,	I	select	the	fittest	one	
for	 the	 solution	 to	 the	
programming	problem.	

0.688	 Pearson	Correlation	 0.683**	 0.949	

Significance	(2-tailed)	 0.000	 	

I7:	 I	 can	 determine	 the	 fittest	
solution	to	a	problem.	

0.688	 Pearson	Correlation	 0.684**	 	
Significance	(2-tailed)	 0.000	 0.949	

I25:	I	can	make	changes	on	the	
program.	

0.674	 Pearson	Correlation	 0.667**	 0.949	
Significance	(2-tailed)	 0.000	 	

I15:	 I	 can	 make	 preparations	
(like	 determining	 the	 variables	
and	 processes)	 required	 for	
solving	 the	 programming	
problem.	

0.670	 Pearson	Correlation	 0.668**	 0.949	

Significance	(2-tailed)	 0.000	 	

I3:	I	can	make	an	interpretation	
regarding	 whether	 or	 not	 a	
programming	problem	could	be	
solved.	

0.656	 Pearson	Correlation	 0.608**	 0.949	

Significance	(2-tailed)	 0.000	 	

I8:	 I	 can	 suggest	 different	
solutions	 in	 order	 to	 solve	 the	
programming	problems.	

0.650	 Pearson	Correlation	 0.519**	 0.949	
Significance	(2-tailed)	 0.000	 	

I26:	 I	 can	 correct	 the	mistakes	
about	 the	 coding	 in	 the	
program.	

0646	 Pearson	Correlation	 0.644**	 0.949	
Significance	(2-tailed)	 0.000	 	

I9:	 I	 determine	 the	 solution	 to	
the	programming	problem	step	
by	step.	

0639	 Pearson	Correlation	 0.634**	 0.950	
Significance	(2-tailed)	 0.000	 	

I20:	 I	 know	 the	 stages	 of	
programming.	

0.639	 Pearson	Correlation	 0.637**	 0.950	
Significance	(2-tailed)	 0.000	 	

I29:	I	can	explain	the	process	of	
developing	a	software	project.	

0.637	 Pearson	Correlation	 0.644**	 0.950	
Significance	(2-tailed)	 0.000	 	

I17:	 When	 necessary,	 I	 can	
change	 the	 order	 of	 the	
processes	designed	for	solving	a	
programming	problem.	

0.636	 Pearson	Correlation	 0.642**	 0.950	

Significance	(2-tailed)	 0.000	 	

I28:	 I	 can	 share	 my	 program	
with	 other	 people	 via	 the	
internet.	

0.628	 Pearson	Correlation	 0.632**	 0.950	
Significance	(2-tailed)	 0.000	 	

I23:	 I	 can	 enable	 the	 perfect	
functioning	of	the	program.	

0.612	 Pearson	Correlation	 0.613**	 0.950	
Significance	(2-tailed)	 0.000	 	

I14:	 I	 can	 discuss	 the	 different	
steps	 being	 developed	 for	
solving	 the	 programming	
problem.	

0.609	 Pearson	Correlation	 0.610**	 0.949	

Significance	(2-tailed)	 0.000	 	



Computer	Programming	Self-Efficacy	Scale	(CPSES)	for	Secondary	School	Students:	Development,	
Validation	and	Reliability	

	

Cilt:7	Sayı:1	Yıl:2017	

170	

Items***	

Factor	
load	

Corelation	 Total	scale	
correlation	

Cronbach's	
Alpha	if	
Item	
Deleted	

I13:	I	can	correct	a	programming	
problem	 whose	 solution	 steps	
are	given	wrong.	

0.605	 Pearson	Correlation	 0.608**	 0.950	
Significance	(2-tailed)	 0.000	 	

I21:	 I	 know	where	 to	write	 the	
program	codes.	

0.589	 Pearson	Correlation	 0.589**	 0.950	
Significance	(2-tailed)	 0.000	 	

I12:	I	share	the	steps	of	solution	
to	 the	 programming	 problem	
with	my	friends.	

0.584	 Pearson	Correlation	 0.593**	 0.950	
Significance	(2-tailed)	 0.000	 	

I2:	 I	 can	 solve	 complex	
programming	 problems	 by	
separating	 them	 into	 smaller	
sub-problems.	

0.582	 Pearson	Correlation	 0.586**	 0.950	

Significance	(2-tailed)	 0.000	 	

I1:	 I	 can	understand	whether	a	
problem	 is	 a	 programming	
problem	or	not.		

0.546	 Pearson	Correlation	 0.549**	 0.950	
Significance	(2-tailed)	 0.000	 	

I19:	 I	know	what	the	operators	
+,	 -,	 *,	 /,	 >,<,	 =	 mean	 in	 a	
programming.	

0.512	 Pearson	Correlation	 0.523**	 0.951	
Significance	(2-tailed)	 0.000	 	

I18:	 I	 can	use	 the	cycle	 instead	
of	repeating	instructions.	

0.508	 Pearson	Correlation	 0.519**	 0.951	
Significance	(2-tailed)	 0.000	 	

I11:	 I	 can	 show	 the	 steps	 of	
solution	 by	 drawing	 figures	 on	
paper.	

0.473	 Pearson	Correlation	 0.492**	 0.951	
Significance	(2-tailed)	 0.000	 	

*The	table	does	not	involve	the	load	values	of	items	as	.40	and	lower	(Büyüköztürk,	2002).	

**Correlation	is	significant	at	the	level	of	0.01	(2-tailed).	

***The	scale	developed	in	Turkish.	All	items	are	translated	into	English	for	this	article.	

	 Table	4	shows	the	factor	load	distribution	values	of	the	scale.	The	factor	loads	of	the	
scale,	which	involves	a	single	factor	of	31	items,	obtained	values	varying	between	0.473	and	
0.718.	it	can	be	observed	that	all	the	items	in	the	scale	have	a	moderate	and	high	relationship	
with	the	total	scale	score	having	a	significance	level	of	0.01	(p<0.01).	The	item	test	correlations	
of	the	scale	have	values	between	0.492	and	0.712.	The	correlation	values	for	the	item	validity	
and	homogeneity	of	 the	 scale	prove	 that	 the	 scale	 items	are	 valid	and	measure	 the	 same	
structure.	Examining	the	item	test	correlation	values,	it	is	observed	that	the	scale	items	have	
a	sufficient	validity	level.		

Findings	regarding	the	confirmatory	factor	analysis	

	 The	fit	of	model	regarding	the	factor	structure	presented	as	a	result	of	the	Exploratory	
Factor	Analysis	(EFA)	was	tested	via	Confirmatory	Factor	Analysis	(CFA).	The	fit	of	the	acquired	
model	 was	 tested	 via	 the	 cohesion	 criterion	 of	 X2/df,	 RMSEA	 (Root	 Mean	 Square	 Error	



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

171	

Approximation),	 NFI	 (Normed	 Fit	 Index),	 NNFI	 (Non-Normed	 Fit	 Index),	 RMR	 (Root	Mean	
Square	Residual),	CFI	(Comparative	Fit	Index),	IFI	(Incremental	Fit	Index),	GFI	(Goodness	of	Fit	
Index)	and	AGFI	(Adjusted	Goodness	of	Fit	Index).	As	a	result	of	the	analysis,	we	determined	
the	fit	of	model	as	X2/df	=	1.84;	RMSEA	value	=	0.06;	NFI	value	=	0.95;	NNFI	value	=	0.98;	RMR	
value	 =	 0.068;	 CFI	 value	 =	 0.98;	 IFI	 value	 =	 0.98;	 GFI	 value	 =	 0.82	 and	AGFI	 value	 =	 0.79.	
Considering	the	data	acquired,	it	was	observed	that	some	of	the	fit	values	of	the	model	were	
not	acceptable.	Modifications	suggested	as	a	result	of	this	analysis	were	implemented.	As	a	
result	of	the	modifications,	we	determined	X2/df	=	1.47;	RMSEA	value	=	0.045;	NFI	value	=	
0.96;	NNFI	value	=	0.99;	RMR	value	=	0.061;	CFI	value	=	0.99;	IFI	value	=	0.99;	GFI	value	=	0.85	
and	AGFI	value	=	0.83.		

	 The	majority	of	goodness	of	fit	indexes	have	a	value	between	0	and	1.	While	the	value	
0	signifies	that	there	is	no	fit	between	the	data	and	the	model,	the	value	1	signifies	that	there	
is	a	perfect	fit.	If	the	value	of	an	index	is	larger	than	0.9	and	is	almost	1,	it	can	be	asserted	that	
the	data	is	an	almost	perfect	fit	(Çerezci,	2010).	Şimşek	(2007)	suggests	that	if	the	χ2/df	value	
is	5	or	lower	and	the	RMSEA	value	is	0.08	or	lower,	there	is	a	good	fit.	Byrne	(1998),	on	the	
other	hand,	suggests	that	a	good	fit	requires	the	RMR	and	SRMR	values	to	be	0.1	or	lower.	
Similarly,	a	good	fit	requires	the	IFI,	CFI,	NFI	and	NNFI	to	be	greater	than	0.9.	In	addition	to	
this,	if	the	AGFI	is	0.8	or	greater	and	the	GFI	is	0.85	or	greater,	this	signifies	an	acceptable	fit	
(Çokluk,	Şekercioğlu	&	Büyüköztürk,	2010).	Considering	the	goodness	of	fit	indexes	acquired	
within	the	scope	of	this	study,	it	can	be	observed	that	the	scale	has	a	statistically	acceptable	
goodnes	of	fit.	While	Table	5	shows	the	fit	indexes	of	the	scale	involving	a	single	factor	and	31	
items	before	and	after	modification,	Figure	1	shows	the	Structural	Equation	Model	and	the	
Standard	Values	after	modification.		

Table	5.		

Fit	Values	of	the	Programming	Self-Efficacy	Scale	for	Secondary	School	Students		

Fit	index	 Before	 the	
modification	

After	 the	
modification	

Acceptable	value	

Chi-Square	(X2)		 796.96	 618.32	 	
Degree	of	Freedom	 434	 422	 	
Chi-Square/df		 1.84	 1.47	 <=5	
RMSEA		 0.06	 0.045	 <=0.08	
NFI		 0.95	 0.96	 >0.9	
NNFI		 0.98	 0.99	 >0.9	
RMR	 0.068	 0.061	 <=0.1	
CFI		 0.98	 0.99	 >0.9	
IFI		 0.98	 0.99	 >0.9	
GFI		 0.82	 0.85	 >=0.85	
AGFI		 0.79	 0.83	 >=0.8	

 



Computer	Programming	Self-Efficacy	Scale	(CPSES)	for	Secondary	School	Students:	Development,	
Validation	and	Reliability	

	

Cilt:7	Sayı:1	Yıl:2017	

172	

 

Figure	1.		Structural	equation	model	and the	standard	values	after	modification 

Findings	regarding	the	reliability	coefficient	using	the	method	of	reliability	analysis	and	
equivalent	halves	(two	halves)		

	 As	a	result	of	the	Cronbach	alpha	reliability	analysis,	the	reliability	coefficient	of	the	scale	
was	determined	to	be	as	high	as	0.95	(Özdamar,	1999).	The	scale	items	were	separated	into	
two	parts	consisting	of	sole	and	double	items	and	the	reliability	analysis	was	conducted	via	
the	method	of	equivalent	halves	(completing	half	of	the	test).	The	Pearson	Correlation	table	
between	the	first	and	the	second	halves	is	as	follows	(Table	6).			



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

173	

Table	6	

Correlation	Values	Being	Acquired	Via	the	Method	of	Completing	Half	of	the	Test	Regarding	
the	Programming	Self-Efficacy	Scale	for	Secondary	School	Students	

	 First	half	 Second	half	
First	half	 Pearson	Correlation	 1	 0.935*	

Significance	(2-tailed)	 	 0.000	
N	 233	 233	

*.	Correlation	is	significant	at	the	level	of	0,01	(2-tailed).	

	 The	 reliability	 coefficient	 of	 the	 entire	 test	 could	 be	 determined	 via	 the	 formula		
r𝑒𝑛𝑡𝑖𝑟𝑒 = '∗)*+,)-./

01)*+,)-./
	 	using	the	Spearman-Brown	method	(Ellez,	2009).	 	From	this	point	of	

view,	we	 determined	 the	 reliability	 coefficient	 of	 the	 entire	 test	 via	 the	 Spearman	Brown	
method	as	 follows:	 	 r𝑒𝑛𝑡𝑖𝑟𝑒 = '∗2.456

012.456
	 =	 0.966.	 The	 relationship	between	 the	 first	 and	 the	

second	half	of	the	test	was	determined	as	statistically	and	positively	significant	at	the	level	of	
p<0.01	(see	Table	6).	

Discussion	

	 Computer	programming	for	children	has	recently	been	included	in	numerous	curricula,	
with	various	courses	employing	various	teaching	practices,	and	it	has	an	increasing	popularity	
worldwide.	 However,	 it	 has	 been	 asserted	 that	 the	 popularity	 of	 educational	 computer	
programming	 for	 children	 has	 only	 been	 reflected	 in	 a	 limited	way	 in	 research	 about	 this	
teaching	 (Fessakis	et	al.,	 2013).	 In	particular,	 there	 is	only	a	 limited	number	of	 studies	 for	
determining	the	self-efficacy	level	of	children	with	regard	to	computer	programming	(Aşkar	&	
Davenport,	2009).	

	 In	 this	 study,	 an	 instrument	 was	 developed	 to	 measure	 the	 self-efficacy	 levels	 of	
secondary	school	students	regarding	computer	programming	and	the	psychometric	features	
of	the	scale	were	examined.	The	steps	of	scale	development	were	followed.	The	item	pool	of	
the	scale,	consisting	of	30	items,	was	evaluated	in	accordance	with	expert	opinion.	Items	were	
excluded	 and	 added	 according	 to	 the	 feedback	 received	 from	 the	 experts.	 In	 the	 pilot	
application,	33	items	were	presented	to	the	secondary	school	students.	

	 As	a	result	of	the	study,	a	unidimensional	scale	of	31	items	and	a	5-point	likert	scale	was	
presented.	In	the	unidimension,	the	factor	loads	varied	between	0.47	and	0.71.	The	variance	
rate	for	this	scale	structure	was	41.15%.	It	can	be	asserted	that	the	variance	explained	by	the	
scale	structure	explains	why	it	is	able	to	measure	sufficiently.	

	 Examining	 the	 fit	 indexes	 of	 the	 scale	 structure,	we	 determined	 the	 X2	 /	 df	 =	 1.84;	
RMSEA	value	=	0.06;	NFI	value		=	0.95;	NNFI	value	=	0.98;	RMR	value	=	0.068;	CFI	value	=	0.98;	
IFI	value	=		0.98;	GFI	value	=	0.82	and	AGFI	value	=	0.79.	As	some	values	were	not	acceptable	
for	 the	 goodness	 of	 fit	 of	 the	 model,	 we	 implemented	 the	 modifications	 suggested	 and	
determined	X2	/	df	=	1.47;	RMSEA	value	=	0.045;	NFI	value	=	0.96;	NNFI	value	=	0.99;	RMR	
value	=	0.061;	CFI	value	=	0.99;	IFI	value	=	0.99;	GFI	value	=	0.85	and	AGFI	value	=	0.83.	All	the	
goodness	of	 fit	 indexes	showed	an	acceptable	 fit	 (Byrne,	1998).	From	this	perspective,	 the	
scale	structure	was	observed	to	have	an	acceptable	fit.		



Computer	Programming	Self-Efficacy	Scale	(CPSES)	for	Secondary	School	Students:	Development,	
Validation	and	Reliability	

	

Cilt:7	Sayı:1	Yıl:2017	

174	

	 Consistency-related	 evidence	 was	 obtained	 for	 the	 reliability	 of	 the	 computer	
programming	 self-efficacy	 scale	 for	 children.	 The	 Cronbach	 alpha	 for	 internal	 consistency,	
involving	all	31	items,	was	determined	as	0.95.	From	various	methods	aimed	at	determining	
the	internal	consistency	of	the	scale,	we	used	the	equivalent	halves	method.	As	a	result	of	the	
reliability	analysis	that	was	performed	via	the	equivalent	halves	method,	we	obtained	a	value	
of	0.966.	The	fact	that	these	values	are	acceptable	reliability	values	shows	that	the	scale	had	
a	sufficient	internal	consistency	level.	

	 Teachers	and	researchers	could	use	the	CPSES	as	a	single	factor	structure	to	measure	
the	 computer	 programming	 self-efficacy	 levels	 of	 students	 in	 teaching	with	 programs	 like	
Scratch,	 Logo,	Alice	 that	have	commonly	been	used,	especially	 in	 recent	years,	 to	educate	
children	in	computer	programming.		

Conclusion	

	 Today,	 in	 parallel	 with	 developments	 in	 information	 technology,	 computer	
programming	 has	 become	 an	 important	 area,	 attracting	 large	 financial	 investments	
worldwide.	Computers,	mobile	computers	and	smart	phones	are	equipped	with	constantly	
evolving	software	that	meets	different	needs	with	each	passing	day.	Furthermore,	it	has	been	
suggested	that	computational	thinking	should	be	considedered	among	the	basic	skills	required	
in	the	21st	century	(Philips,	2009;	Wing	2010).	Reading,	writing	and	arithmetic	have	always	
been	among	the	basic	skills,	but	today	individuals	of	the	21st	century	also	need	to	have	the	
ability	to	think	 like	computer	scientists	 in	order	to	solve	ever	more	complex	problems	and	
carry	out	required	tasks	(Wing,	2006).	Computer	science	has	an	interdisciplinary	relationship	
with	 other	 disciplines	 (Barr,	 &	 Stephenson,	 2011).	 Yet	 teaching	 and	 learning	 computer	
programming	 are	 still	 considered	 difficult	 for	 both	 students	 and	 educators	 (Black,	 2006;	
Shadiev	et	al.,	2014).	In	order	to	increase	the	degree	of	computer	programming	self-efficacy,	
its	initial	level	must	first	be	determined.	There	is,	however,	an	extremely	limited	number	of	
assessment	instruments	aimed	at	measuring	computer	programming	self-efficacy	in	children.	
It	is	possible	to	assert	that	the	assessment	instrument	developed	within	the	scope	of	this	study	
can	 measure	 computer	 programming	 self-efficacy	 in	 a	 valid	 and	 reliable	 way	 and	 this	
instrument	is	thus	useful	in	terms	of	responding	to	and	filling	the	lack	of	a	relevant	assessment	
instrument.	

	 The	results	of	this	study	could	be	generalized,	although	based	on	some	limitatons.	The	
study	group	comprises	only	secondary	school	students.	In	addition	to	this,	the	confirmatory	
factor	analysis	was	conducted	via	the	exploratory	factor	analysis	data.	“Both	exploratory	and	
confirmatory	techniques	are	useful	tools	for	analyzing	the	complex	data	sets”	(Plucker,	2003).	
“If	a	good	fit	is	questionable	when	the	factor	structure	is	confirmatively	tested	on	the	same	
data,	we	cannot	expect	that	a	test	of	the	factor	structure	in	a	confirmative	follow-up	study,	
that	is,	on	different	data,	will	lead	to	a	good	fit”	(Van	Prooijen	&	Van	Der	Kloot,	2001).	Another	
limitation	of	the	study	is	that	it	did	not	examine	the	external	criterion	validity	within	the	scope	
of	 validity	 studies.	 Apart	 from	 these	 limitations,	 it	 was	 observed	 that	 the	 assessment	
instrument	was	able	to	adequately	measure	the	structure	of	the	scale.	

	 It	is	suggested	that	there	be	further	research	into	whether	the	assessment	instrument	
developed	here	has	a	similar	validity	in	assessing	high	school	and	university	students,	as	well	
as	within	 different	 languages	 and	 cultures.	 It	 is	 also	 suggested	 that	 studies	 be	 conducted	



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

175	

regarding	any	personal	and	demographic	features	of	students	which	may	affect	their	levels	of	
computer	programming	self-efficacy,	as	well	as	the	educational	methods	and	techniques	that	
may	also	have	an	effect.	It	should	be	possible	to	determine	the	obstacles	that	negatively	affect	
computer	programming	teaching	and	to	conduct	comprehensive	studies	that	could	increase	
the	success	in	this	subject.	 It	 is	suggested	that	studies	be	conducted	that	would	model	the	
relationships	 between	 self-efficacy	 in	 computer	 programming	 and	 other	 problem-solving	
skills,	 as	 well	 as	 other	 critical	 and	 high-level	 thinking	 and	 computational	 thinking	 skills.	
Moreover,	 such	 studies	 could	 determine	 and	 support	 the	 contribution	 of	 computer	
programming	skills	to	the	overall	cognitive	development	of	students.	It	is	also	suggested	that	
the	effect	of	computer	programming	on	the	teaching	and	learning	of	maths	and	other	subjects	
be	investigated.	

References	

Abdi,	H.	(2003).	Factor	rotations	in	factor	analyses.	Encyclopedia	for	Research	Methods	for	the	
Social	Sciences.	Sage:	Thousand	Oaks,	CA,	792-795.	

Altun,	A.,	&	Mazman,	S.	G.	(2012).	Programlamaya	ilişkin	öz	yeterlilik	algısı	ölçeğinin	Türkçe	
formumun	 geçerlilik	 ve	 güvenirlik	 çalışması.	 Eğitimde	 ve	 Psikolojide	 Ölçme	 ve	
Değerlendirme	Dergisi,	3(2),	297-308.	

Anastasiadou,	S.D.,	&	Karakos,	A.S.	(2011).	The	beliefs	of	electrical	and	computer	engineering	
students	 regarding	 computer	 programming.	 The	 International	 Journal	 of	 Technology,	
Knowledge	and	Society,	7(1),	37-51.	

Armoni,	 M.	 (2011).	 The	 nature	 of	 CS	 in	 K-12	 curricula:	 the	 roots	 of	 confusion.	 ACM	
Inroads,	2(4),	19-20.	doi:10.1145/2038876.2038883	

Askar,	P.,	&	Davenport,	D.	(2009).	.An	investigation	of	factors	related	to	self-efficacy	for	java	
Programming	 among	 engineering	 students.	 The	 Turkish	 Online	 Journal	 of	 Educational	
Technology	TOJET,	8(1):	26-32.	

Austin,	H.S.	 (1987).	 Predictors	of	 pascal	 programming	achievement	 for	 community	 college	
students.	Proceedings	of	the	eighteenth	SIGCSE	technical	symposium	on	Computer	science	
education,	Missouri,	United	States,	161-164.	doi:	10.1145/31726.31752	

Bandura,	 A.	 (1977).	 Self-efficacy:	 Toward	 a	 unifying	 theory	 of	 behavioral	 change.		
Psychological	Review,	84,	191-215,	http://dx.doi.org/10.1037/0033-295X.84.2.191	

Bandura,	 A.	 (2001).	 Social	 cognitive	 theory:	 An	 agentic	 perspective.	 Annual	 review	 of	
psychology,	52(1),	1-26.	doi:10.1146/annurev.psych.52.1.1	

Barr,	V.,	&	Stephenson,	C.	(2011).	Bringing	computational	thinking	to	K-12:	what	is	Involved	
and	what	is	the	role	of	the	computer	science	education	community?.	ACM	Inroads,	2(1),	48-
54.	doi:10.1145/1929887.1929905	

Black,	 T.R.	 (2006).	 Helping	 novice	 programming	 students	 succeed.	 Journal	 of	 Computing	
Sciences	in	Colleges,	22(2),	109–114.	



Computer	Programming	Self-Efficacy	Scale	(CPSES)	for	Secondary	School	Students:	Development,	
Validation	and	Reliability	

	

Cilt:7	Sayı:1	Yıl:2017	

176	

Booth,	 S.	 (1992).	 Learning	 to	 program:	 A	 phenomenographic	 perspective.	 University	 of	
Gothenburg	Publication,	http://hdl.handle.net/2077/16224	

Brichacek,	A.	(2014).	Computational	thinking	boosts	students’	higher-order	skills.	Retrieved	
May	21,	2015	from		
https://www.iste.org/explore/articleDetail?articleid=232&category=Featured-
videos&article=Computational%20thinking%20boosts%20students%E2%80%99%20higher
-order%20skills.		

Büyüköztürk,	Ş.	(2002).	Faktör	analizi:	Temel	kavramlar	ve	ölçek	geliştirmede	kullanımı.	Kuram	
ve	uygulamada	eğitim	yönetimi,	32(32),	470-483.	

Büyüköztürk,	Ş.	(2010).	Sosyal	bilimler	için	veri	analizi	el	kitabı	[Handbook	of	data	analysis	for	
the	social	sciences],	Ankara:	Pegem	Akademi.	

Byrne,	B.	M.	(1998).	Structural	equation	modeling	with	lisrel,	prelis	and	simplis:	basic	concepts,	
applications,	and	programmings.	London:	Lawrence	Erlbaum	Assocatiates,	Publishers.	

Caspersen,	M.	E.,	&	Kolling	M.	(2009).	STREAM:	A	first	programming	process.	ACT	Transaction	
on	Computing	Education,	9,	1-29.	doi:10.1145/1513593.1513597	

Compeau,	D.	R.,	&	Higgins,	C.	A.	(1995).	Computer	self-efficacy:	Development	of	a	measure	
and	initial	test.	MIS	quarterly,	189-211,	http://www.jstor.org/stable/249688	

Çerezci,	 E.T.	 (2010).	 Yapısal	 eşitlik	 modelleri	 ve	 kullanılan	 uyum	 iyiliği	 indekslerinin	
karşılaştırılması.	 (Unpublished	 Doctoral	 Dissertation).	 Gazi	 Üniversitesi	 Fen	 Bilimleri	
Enstitüsü:	Ankara.	

Çokluk,	 Ö.,	 Şekercioğlu,	 G.,	 &Büyüköztürk,	 Ş.	 (2010).	 Sosyal	 bilimler	 için	 çok	 değişkenli	
istatistik:	SPSS	ve	LISREL	uygulamaları.	Ankara:	Pegema	Yayıncılık.	

DeVellis,	 R.	 F.	 (2012).	Scale	 development:	 Theory	 and	 applications	 (Vol.	 26).	 London:	 Sage	
publications.	

Ellez,	 A.	 M.	 (2011).	 Ölçme	 araçlarında	 bulunması	 gereken	 özellikler.	 Bilimsel	 araştırma	
yöntemleri.	(In	Second	Edition),	165-190.	Ankara:	Anı	Yayıncılık.		

Fessakis,	G.,	Gouli,	E.,	&	Mavroudi,	E.	(2013).	Problem	solving	by	5-6	years	old	kindergarten	
children	 in	 a	 computer	 programming	 environment:	 A	 case	 study.	 Computers	 &	
Education,	63,	87-97.	doi:	10.1016/j.compedu.2012.11.016	

Fessakis,	 G.,	 &	 Serafeim,	 K.	 (2009).	 Influence	 of	 the	 familiarization	with	 scratch	 on	 future	
teachers'	opinions	and	attitudes	about	programming	and	ICT	in	education.	In	ACM	SIGCSE	
Bulletin	(Vol.	41,	No.	3,	pp.	258-262).	ACM.	Doi:	10.1145/1595496.1562957	

Feurzeig,	W.,	&	Papert,	S.	A.	(2011).	Programming-languages	as	a	conceptual	framework	for	
teaching	 mathematics.	 Interactive	 Learning	 Environments,	 19(5),	 487-501.doi:	
10.1080/10494820903520040	



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

177	

Gökçearslan,	 Ş.,	 &	 Alper,	 A.	 (2015).	 The	 effect	 of	 locus	 of	 control	 on	 learners'	 sense	 of	
community	 and	 academic	 success	 in	 the	 context	 of	 online	 learning	 communities.	 The	
Internet	and	Higher	Education,	27,	64-73.	Doi:	10.1016/j.iheduc.2015.06.003	

Grover,	S.,	&	Pea,	R.	 (2013).	Computational	Thinking	 in	K–12	A	Review	of	 the	State	of	 the	
Field.	Educational	Researcher,	42(1),	38-43.	doi:	10.3102/0013189X12463051	

Hair,	 J.	F.,	Anderson,	R.	E.,	Tatham,	R.	L.,	&	Black,	W.	C.	 (1998).	Multivariate	data	analysis.	
PrenticeHall	International,	Upper	Saddle	River,	New	Jersey.	

ISTE.	 (2007).	 ISTE	 standards	 students.	 International	 Society	 for	 Technology	 in	 Education:	
Retrieved,	 August,	 2015	 from	 https://www.iste.org/docs/pdfs/20-14_ISTE_Standards-
S_PDF.pdf		

Jones,	S.	P.	(2011).	Computing	at	School	International	comparisons.	Retrieved	Ağustos	5,	2015	
from		http://www.computingatschool.org.uk/index.php?id=documents	adresinden.	

Kafai,	Y.,	&	Burke,	Q.	(2013).	Computer	programming	goes	back	to	school.	Phi	Delta	Kappan,	
95(1),	61–65.		

Kalelioğlu,	 F.	 (2015).	 A	 new	 way	 of	 teaching	 programming	 skills	 to	 K-12	 students:	 Code.	
org.	Computers	in	Human	Behavior,	52,	200-210.	doi:10.1016/j.chb.2015.05.047	

Kan,	A.,	&	Akbaş.	A.	(2005).	Lise	öğrencilerinin	kimya	dersine	yönelik	tutum	ölçeği	geliştirme	
çalışması.	Mersin	Üniversitesi	Eğitim	Fakültesi	Dergisi,	1	(2),	227-237.	

Kay,	 R.	 H.,	 &	 Knaack,	 L.	 (2005).	 A	 case	 for	 ubiquitous,	 integrated	 computing	 in	 teacher	
education.	 Technology,	 Pedagogy	 and	 Education,	 14(3),	 391-412.	
doi:10.1080/14759390500200213	

Ke,	 F.	 (2014).	 An	 implementation	 of	 design-based	 learning	 through	 creating	 educational	
computer	 games:	 A	 case	 study	 on	mathematics	 learning	 during	 design	 and	 computing.	
Computers	&	Education,	73,	26–39.	doi:10.1016/j.compedu.2013.12.010	

Kelleher,	 C.,	 &	 Pausch,	 R.	 (2007).	 Using	 storytelling	 to	 motivate	 programming.	
Communications	of	the	ACM,	50(7),	58-64.	Doi:	10.1145/1272516.1272540	

Kelleher,	C.,	Pausch,	R.,	&	Kiesler,	S.	(2007).	Storytelling	alice	motivates	middle	school	girls	to	
learn	computer	programming.	In	Proceedings	of	the	SIGCHI	conference	on	Human	factors	
in	computing	systems	(pp.	1455-1464).	ACM.	doi:	10.1145/1240624.1240844	

Kline,	P.	(1994).	An	Easy	Guide	To	Factor	Analysis.	New	York:	Routledge	

Korkmaz,	 Ö.,	 &	 Altun,	 H.	 (2014).	 Adapting	 computer	 programming	 self-efficacy	 scale	 and	
engineering	students’	self-efficacy	perceptions.	Participatory	Educational	Research	(PER),	
1(1),	20-31,	http://dx.doi.org/10.17275/per.14.02.1.1	

Korkmaz,	 Ö.,	 Çakir,	 R.,	 &	 Özden,	 M.	 Y.	 (2017).	 A	 validity	 and	 reliability	 study	 of	 the	
Computational	 Thinking	 Scales	 (CTS).	 Computers	 in	 Human	 Behavior,	
http://dx.doi.org/10.1016/j.chb.2017.01.005	



Computer	Programming	Self-Efficacy	Scale	(CPSES)	for	Secondary	School	Students:	Development,	
Validation	and	Reliability	

	

Cilt:7	Sayı:1	Yıl:2017	

178	

Lee,	 J.,	 Park,	 J.	G.,	&	Hwang,	Y.	 (2013).	A	 study	on	general	 and	 specific	programming	 self-
efficacy	with	 antecedents	 from	 the	 social	 cognitive	 theory.	 Journal	 of	 Next	 Generation	
Information	Technology,	4(8),	423-432.	

Lewis,	C.	M.	(2010).	How	programming	environment	shapes	perception,	learning	and	goals:	
logo	vs.	scratch.	In	Proceedings	of	the	41st	ACM	technical	symposium	on	Computer	science	
education	(pp.	346-350).	ACM.	doi:	10.1145/1734263.1734383	

Lye,	S.	Y.,	&	Koh,	J.	H.	L.	(2014).	Review	on	teaching	and	learning	of	computational	thinking	
through	programming:	What	is	next	for	K-12?.	Computers	in	Human	Behavior,	41,	51-61.	
Doi:	10.1016/j.chb.2014.09.012	

Maheshwari,	P.	(1997,	July).	Teaching	programming	paradigms	and	languages	for	qualitative	
learning.	 In	 Proceedings	 of	 the	 2nd	 Australasian	 conference	 on	 Computer	 science	
education	(pp.	32-39).	ACM.	doi:10.1145/299359.299365	

Mazman,	 S.	 G.,	 &	 Altun,	 A.	 (2013).	 Programlama-I	 dersinin	 böte	 bölümü	 öğrencilerinin	
programlamaya	 ilişkin	 öz	 yeterlilik	 algıları	 üzerine	 etkisi.	 Journal	 of	 Instructional	
Technologies	&	Teacher	Education,	2(3),	24-29.	

Murphy,	C.	A.,	Coover,	D.,	&	Owen,	S.	V.	(1989).	Development	and	validation	of	the	computer	
self-efficacy	 scale.	 Educational	 and	 Psychological	 measurement,	 49(4),	 893-899.	 doi:	
10.1177/001316448904900412	

Nilsen	H.,	&	Larsen	A.	(2011).	Using	the	personalized	system	of	instruction	in	an	introductory	
programming	course.	NOKOBIT,	27-38.	November	21-23.	

Özdamar,	K.	(1999).	Paket	Programlar	İle	İstatistiksel	Veri	Analizi	1.	Eskişehir:	Kaan	Kitabevi.	

Özel,	M.,	Timur,	B.,	Timur,	S.	&	Bilen,	K.	(2013).	Öğretim	elemanlarının	pedagojik	alan	bilgilerini	
değerlendirme	 anketinin	 Türkçeye	 uyarlanması	 çalışması.	 Ahi	 Evran	Üniversitesi	 Kırşehir	
Eğitim	Fakültesi	Dergisi	(KEFAD),	14	(1),	407-428.	

Pallant,	J.	(2010).	A	step	by	step	guide	to	data	analysis	using	the	SPSS	program.	Australia:	Allen	
and	Unwin	Books.	

Phillips,	 P.	 (2009).	 Computational	 thinking	 a	 problem	 solving	 tool	 for	 every	 classroom.	
Computer	 Science	 Teacher	 Association.	 Retrieved	 August	 2015	 from	
http://csta.acm.org/Resources/sub/ResourceFiles/CompThinking.pdf.		

Plucker,	 J.	 A.	 (2003).	 Exploratory	 and	 confirmatory	 factor	 analysis	 in	 gifted	 education:	
Examples	with	self-concept	data.	Journal	for	the	Education	of	the	Gifted,	27(1),	20-35.		

Ramalingam,	 V.,	 &	 Wiedenbeck,	 S.	 (1998).	 Development	 and	 validation	 of	 scores	 on	 a	
computer	programming	self-efficacy	scale	and	group	analyses	of	novice	programmer	self-
efficacy.	Journal	of	Educational	Computing	Research,	19(4),	367-381.	Doi:	10.2190/C670-
Y3C8-LTJ1-CT3P	



Volkan	KUKUL,	Şahin	GÖKÇEARSLAN,	Mustafa	Serkan	GÜNBATAR		

EĞİTİM	TEKNOLOJİSİ	Kuram	ve	Uygulama	

179	

Resnick,	M.,	Maloney,	 J.,	Monroy-Hernández,	A.,	Rusk,	N.,	Eastmond,	E.,	Brennan,	K.,	 ...	&	
Kafai,	Y.	(2009).	Scratch:	programming	for	all.	Communications	of	the	ACM,	52(11),	60-67.	
doi:	10.1145/1592761.1592779	

Seehorn,	D.,	 Carey,	 S.,	 Fuschetto,	 B.,	 Lee,	 I.,	Moix,	 D.,	O'Grady-Cunniff,	 D.,	 ...	&	Verno,	 A.	
(2011).	CSTA	K--12	Computer	Science	Standards:	Revised	2011.	ACM.	

Shadiev,	R.,	Hwang,	W.	Y.,	Yeh,	S.	C.,	Yang,	S.	J.,	Wang,	J.	L.,	Han,	L.,	&	Hsu,	G.	L.	(2014).	Effects	
of	unidirectional	vs.	reciprocal	teaching	strategies	on	web-based	computer	programming	
learning.	Journal	of	Educational	Computing	Research,	50(1),	67-95.	doi:10.2190/EC.50.1.d	

Şimşek,	Ö.	F.	(2007).	Yapısal	eşitlik	modellemesine	giriş,	temel	ilkeler	ve	LISREL	uygulamaları.	
Ankara:	Ekinoks	Yayıncılık.	

Tabachnick,	B.	G.	ve	Fidell,	L.v	S.	(1996).	Using	multivariate	statistics	(3.	Ed.).	New	York:	Harper	
Collins	College	Publishers.	

Uysal,	 M.	 P.,	 &	 Yalın,	 H.	 İ.	 (2012).	 Öğretim	 etkinlikleri	 kuramına	 göre	 tasarlanan	 öğretim	
yazılımının	akademik	başarıya	etkisi.	 International	Journal	of	Human	Sciences,	9(1),	185–
204.	

Van	Prooijen,	 J.	W.,	&	Van	Der	 Kloot,	W.	A.	 (2001).	 Confirmatory	 analysis	 of	 exploratively	
obtained	factor	structures.	Educational	and	Psychological	Measurement,	61(5),	777-792.	

Yong,	A.	G.,	&	Pearce,	S.	(2013).	A	beginner’s	guide	to	factor	analysis:	Focusing	on	exploratory	
factor	analysis.	Tutorials	in	Quantitative	Methods	for	Psychology,	9(2),	79-94.	

Weinberg,	A.	E.	(2013).	Computational	thinking:	An	investigation	of	the	existing	scholarship	
and	 research.	 (Unpublished	 Doctoral	 Thesis),	 Colorado	 State	 University,	 School	 of	
Education,	Colorado.	

Wing,	J.	M.	(2006).	Computational	thinking.	Communications	of	the	ACM,	49(3),	33-35.	

Wing,	 J.	 M.	 (2008).	 Computational	 thinking	 and	 thinking	 about	 computing.	 Philosophical	
Transactions	of	The	Royal	Society,	3717-3725.	doi:	10.1098/rsta.2008.0118	

Wing,	 J.	 M.	 (2010).	 Computational	 thinking:	 What	 and	 Why?	 Center	 for	 Computational	
Thinking	 Carnegie	 Mellon:	 Retrieved,	 May	 2014	 Retreived	 from	
https://www.cs.cmu.edu/~CompThink/papers/TheLinkWing.pdf		

Zimmerman,	 B.	 J.	 (2000).	 Self-efficacy:	 An	 essential	 motive	 to	 learn.	 Contemporary	
Educational	Psychology,	25(1),	82-91.	doi:10.1006/ceps.1999.1016	

	


	etku_kapak_7_1
	13_14pc

